
M A N N I N G

Chris Sainty

2 CHAPTER

The life cycle of a component

To perform a render of the component,
the renderer calls the component’s
BuildRenderTree method. This creates
a set of UI updates that are applied
to the DOM.

The UI updates produced
by the BuildRenderTree
method are applied to
the browser’s DOM, which
renders the component
to the UI.

Once the component
has been rendered,
OnAfterRender and
OnAfterRenderAsync
are called.

OnParametersSet

OnParametersSetAsync

OnAfterRender

OnAfterRenderAsync

SetParametersAsync

Parent Component Renders

StateHasChanged

ShouldRender

Component is
rendered

Rendering Process

BuildRenderTree

Run only once in a component’s lifetime

Renderer

Component

Events

SetParametersAsync sets the
component’s parameters and
cascading parameters from the
ParameterView object received
from the parent component.
If the component is being
executed for the first time,
Onlnitialized is called; otherwise,
OnParametersSet is called.

OnParametersSet and
OnParametersSetAsync run every
time the incoming parameters
of the component change.

OnParametersSet
runs and then calls
OnParametersSetAsync. A call is
then made to StateHasChanged.

If OnParametersSetAsync
returned a noncomplete task,
then the result of that task will
be awaited and then another
call to StateHasChanged will
be made.

Code handling built-in events will trigger
the rendering process, such as onclick
handlers. Custom events using the
EventCallback or EventCallback<T>
type will trigger it as well.

User-defined events with the type of
Action or Func<T> can also trigger
the rendering process via a manual
call to StateHasChanged.

Onlnitialized and
OnlnitializedAsync
will run only once
in the lifetime of a
component. This
can be thought of
in a similar way to
the constructor
of a C# class.

If the component isn’t initialized,
then it is set to initialized and
Onlnitialized is called. Once
that has run, then it calls
OnlnitializedAsync.

If a noncomplete task is returned,
then StateHasChanged is called to
render the synchronous part of the
OnlnitializedAsync code before
waiting for the task to complete.

The rendering process potentially runs many times in a
component’s lifetime. Every time a call is made to the
StateHasChanged method, this process will be executed.

StateHasChanged checks
for a pending render. If
one doesn’t exist, then it
checks whether the component
has ever been rendered,
or whether ShouldRender
returns true.
If the component hasn’t
been rendered before,
then the renderer is
notified that the
component should be
rendered.
If the component has
been rendered before
and ShouldRender returns true, then the renderer
is notified that the component should be rendered.

The rendering of the component is handled by an external entity
called a renderer.
It is notified when the component needs to be rendered. It is
added to the render queue to be processed at the next
available opportunity.

OnInitialized

OnInitializedAsync

Blazor in Action

ii

Blazor in Action

CHRIS SAINTY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editors: Toni Arritola and
20 Baldwin Road Kristen Watterson
PO Box 761 Technical development editor: Andrew West
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Production editor: Andy Marinkovich
Copy editor: Carrie Andrews
Proofreader: Keri Hales

Technical proofreader: Karthikeyarajan Rajendran
Typesetter and cover designer: Marija Tudor

ISBN 9781617298646
Printed in the United States of America

http://www.manning.com
http://www.manning.com

This book is dedicated to my son, Archie.

contents
preface x
acknowledgments xii
about this book xiv
about the author xvii
about the cover illustration xviii

1 Starting your Blazor journey 1
1.1 Why choose Blazor for new applications? 2
1.2 Components, a better way to build UI 3

What is a component? 3 ■ The benefits of a component-based
UI 4 ■ Anatomy of a Blazor component 4

1.3 Blazor, a platform for building modern UIs with C# 5
Understanding hosting models 6 ■ Blazor WebAssembly 7
Blazor Server 11 ■ Other hosting models 16

2 Your first Blazor app 18
2.1 Setting up the application 19

Blazor WebAssembly template configurations 20 ■ Creating the
application 21

2.2 Building and running the application 24
2.3 Key components of a Blazor application 25

Index.html 25 ■ Program.cs 27 ■ App.razor 29
wwwroot folder and _Imports.razor 30
vi

CONTENTS vii
2.4 Writing your first components 30
Organizing files using feature folders 31 ■ Setting up
styling 34 ■ Defining the layout 36 ■ The Blazing
Trails home page 38

3 Working with Blazor’s component model 49
3.1 Structuring components 51

Single file 51 ■ Partial class 52

3.2 Component life cycle methods 54
The first render 57 ■ The life cycle with async 58
Dispose: The extra life cycle method 60

3.3 Working with parent and child components 62
Passing values from a parent to a child 64 ■ Passing data
from a child to a parent 68

3.4 Styling components 71
Global styling 72 ■ Scoped styling 73 ■ Using CSS
preprocessors 76

4 Routing 84
4.1 Introducing client-side routing 85

Blazor’s router 85 ■ Defining page components 88

4.2 Navigating between pages programmatically 89
4.3 Passing data between pages using route parameters 92
4.4 Handling multiple routes with a single component 96
4.5 Working with query strings 101

Setting query-string values 101 ■ Retrieving query-string values
using SupplyParameterFromQuery 103

5 Forms and validation—Part 1: Fundamentals 108
5.1 Super-charging forms with components 110

Creating the model 111 ■ Basic EditForm configuration 112
Collecting data with input components 115 ■ Creating
inputs on demand 120

5.2 Validating the model 123
Configuring validation rules with Fluent Validation 123
Configuring Blazor to use Fluent Validation 125

CONTENTSviii
5.3 Submitting data to the server 130
Adding MediatR to the Blazor project 132 ■ Creating a request
and handler to post the form data to the API 132
Setting up the endpoint 136

6 Forms and validation—Part 2: Beyond the basics 140
6.1 Customizing validation CSS classes 141

Creating a FieldCssClassProvider 141 ■ Using custom
FieldCssClassProviders with EditForm 143

6.2 Building custom input components with InputBase 145
Inheriting from InputBase<T> 145 ■ Styling the custom
component 148 ■ Using the custom input component 149

6.3 Working with files 151
Configuring the InputFile component 151 ■ Uploading files when
the form is submitted 153

6.4 Updating the form to allow editing 159
Separating the trail form into a standalone component 159
Refactoring AddTrailPage.razor 161 ■ Adding the edit trail
feature 165 ■ Testing the edit functionality 177

7 Creating more reusable components 180
7.1 Defining templates 181
7.2 Enhancing templates with generics 185
7.3 Sharing components with Razor class libraries 189

8 Integrating with JavaScript libraries 194
8.1 Creating a JavaScript module and accessing it via a

component 195
Testing out the RouteMap component 199 ■ Calling JavaScript
functions from C# and returning a response 200

8.2 Calling C# methods from JavaScript 203
8.3 Integrating the RouteMap component with the

TrailForm 206
8.4 Displaying the RouteMap on the TrailDetails drawer 214

9 Securing Blazor applications 221
9.1 Integrating with an identity provider: Auth0 223

Registering applications with Auth0 224 ■ Customizing tokens
from Auth0 224 ■ Configuring Blazor WebAssembly to use

CONTENTS ix
Auth0 225 ■ Configuring ASP.NET Core WebAPI
to use Auth0 229

9.2 Displaying different UI fragments based on authentication
status 230
Updating the Home feature 233

9.3 Prevent unauthorized users accessing a page 238
Securing API endpoints 239 ■ Calling secure API endpoints from
Blazor 241

9.4 Authorizing users by role 245
Adding roles in Auth0 245 ■ Consuming Auth0 roles in Blazor
WebAssembly 247 ■ Implementing role-based logic 249

10 Managing state 253
10.1 Simple state management using an in-memory store 254

Creating and registering a state store 254 ■ Saving data entered
on the form to AppState 255

10.2 Improving the AppState design to handle more state 258
10.3 Creating persistent state with browser local storage 260

Defining an additional state store 261 ■ Adding and removing
trails from the favorites list 264 ■ Displaying the current number
of favorite trails 265 ■ Reorganizing and refactoring 266
Showing favorited trails on the favorite trails page 268
Initializing AppState 270

11 Testing your Blazor application 272
11.1 Introducing bUnit 273
11.2 Adding a bUnit test project 274
11.3 Testing components with bUnit 277

Testing rendered markup 278 ■ Triggering event handlers 281
Faking authentication and authorization 283 ■ Emulating
JavaScript interactions 285 ■ Testing multiple components 287

appendix A Adding an ASP.NET Core backend to a Blazor WebAssembly
app 291

appendix B Updating existing areas to use the API 305

index 315

preface
I’ve been an ASP.NET developer for over 17 years now. I love working with ASP.NET
Core and the C# language. But there was always an element missing for me. . . .

 Since I was young, I’ve enjoyed building web UIs. When I was 15, my best friend and
I decided to build a website about the Quake games we enjoyed playing. He built the
backend while I built the UI. I remember spending hours and days creating nested
tables and inline styles to create the look we wanted for the site. This seems torturous
now, but I really loved it at the time. Throughout my resulting career, I’ve really enjoyed
building the client-side experience, but this has always taken me away from C# and
ASP.NET Core. Instead, I’ve learned JavaScript and various frameworks and tooling
that are popular in that ecosystem. While I enjoyed JavaScript, I really wanted to be
using my favorite language, C#, when building client-side web applications.

 Then one day in February 2018, I stumbled across a video of Steve Sanderson at
NDC Oslo 2017 (https://youtu.be/MiLAE6HMr10). In this talk, he presented an
experiment he had built that took a portable .NET run time called Dot Net Anywhere
and compiled it to a format called WebAssembly. He used this as a base to create a
framework that allowed client-side web applications to be built using Razor (a mix of
C#, HTML, and CSS) that ran entirely in the browser. He called it Blazor.

 The first experimental preview of Blazor was released by Microsoft on March 22,
2018, with new previews almost every month. I followed along with each preview, try-
ing out the new features and writing blog posts about my experiences. On April 18,
2019, Daniel Roth published a blog post announcing that it was moving out of the
experimental phase and Microsoft had committed to ship it as a supported web UI
framework. Finally, the missing element!

 Since that blog post, Blazor has gone from strength to strength. Additional hosting
models have been added, allowing Blazor to run in more places. With .NET 6, we’ve
x

https://youtu.be/MiLAE6HMr10

PREFACE xi
seen some of the biggest leaps forward with the framework. AOT (ahead-of-time)
mode has been introduced, producing huge performance improvements for Blazor
WebAssembly applications. The evolution of Xamarin, .NET MAUI, allows Blazor to
move out of the browser and be used to create cross-platform desktop and mobile
applications.

 This book is the result of my journey with Blazor from that first time watching
Steve’s NDC Oslo presentation to building production applications today. To date,
I’ve published over 75 blog posts about Blazor on my personal blog and have written
many for other publications. Blazor also gave me a passion for public speaking, first at
.NET user groups and eventually at international conferences. I even got to give a talk
on Blazor at NDC Oslo in room 7, the same room that Steve was in when he first pre-
sented his experiment a few years earlier.

acknowledgments
This book has been one of the hardest projects of my life, and while it has my name
on the cover, it was only possible with the help of many other people. I’d like to take
this opportunity to say a huge thank-you to those people.

 First and foremost, I want to thank my wife, Robyn. You have been my rock
throughout the last year and a half. You have had to deal with me at my worst during
this time, but your unwavering support and encouragement made me believe that I
could finish this. I will always be grateful for that, and I love you very much.

 I’d also like to thank my whole family for their support and encouragement—
especially my dad, who talked me out of quitting at one point when I completely lost
faith.

 Next, I’d like to thank some amazing people at Manning without whom this book
would not exist. Brian Sawyer recruited me, convinced me to write a proposal, and
convinced me that I could pull it off! Kristen Watterson, my developmental editor for
almost the entire project, helped shape the book into what it is today. Toni Arritola
stepped in at the eleventh hour to get the book over the line. Andrew West, my techni-
cal developmental editor, made sure my code made sense and actually worked. Finally,
Karthikeyarajan Rajendran did a great job with the final technical proofread of the
book. Thanks also to the production team at Manning for all their hard work in pro-
ducing this book.

 Also, a special thanks to all the reviewers for their comments and feedback: Al
Pezewski, Alberto Acerbis, Ashwini Gupta, Bruno Sonnino, Grant Colley, Jason Hales,
Jeff Smith, Jim Wilson, John Rhodes, Kalyan Chanumolu, Marcin Sęk, Mark Chalkley,
Mike Ted, Pedro Seromenho, Richard Michaels, Rohit Sharma, Ron Lease, Rui
Ribeiro, Steve Goodman, Tanya Wilke, Thomas Gueth, and Wayne Mather—you
made this a better book.
xii

ACKNOWLEDGMENTS xiii
 Finally, I’d like to thank Steve Sanderson, Daniel Roth, and the whole ASP.NET
Core team at Microsoft. You’ve created something really special with Blazor, and it’s
literally changed my life. I’m now an author, international speaker, and Microsoft
MVP all because of Blazor. Thank you.

about this book
Blazor in Action has been written to take you from being a beginner to being proficient
and confident building Blazor applications. Initially, the book covers high-level con-
cepts such as hosting models and components before drilling down into specific fea-
tures of the framework, such as routing, forms and validation, and templated
components.

 To help imbed the various concepts and features, you’ll build a real application—
Blazing Trails—chapter by chapter. By the end of the book, you’ll have a complete ref-
erence app you can refer to anytime.

Who should read this book

This book is aimed at developers who have a basic understanding of .NET, C#, and
web technologies (HTML, JavaScript, and CSS). If you’ve been building web applica-
tions using Razor Pages or MVC, then the learning curve will feel quite shallow. If
you’ve been building apps using ASP.NET Core Web APIs and a JavaScript framework
such as React, Vue.js, or Angular, then you’ll be in an even better position.

How this book is organized: A road map

This book is organized into 11 chapters and 2 appendices.

 Chapter 1 introduces Blazor, component-based UIs, and hosting models. It cov-
ers what Blazor is and the reasons why you might choose to use it, as well as how
components are a better way to build UIs and how Blazor has embraced this
approach. It also covers what hosting models are and discusses the advantages
and tradeoffs they each have.
xiv

ABOUT THIS BOOK xv
 Chapter 2 begins the journey of building the Blazing Trails application. Initially
it covers choosing the right project template for a new Blazor application, as
well as how to build and run it. Then it walks through the key parts of a Blazor
application. It concludes by talking about file organization using feature folders
and how to write your first components.

 Chapter 3 dives deeper into Blazor’s component model. It discusses how to
structure components, what life cycle methods are and what order they execute
in, and how to work with parent and child components. It also covers styling
components and using CSS preprocessors with Blazor.

 Chapter 4 looks at client-side routing, showing how to define page components
and navigate between them. It also tackles more advanced topics such as pass-
ing data in the URL and navigating programmatically.

 Chapter 5 is the first of two chapters covering forms and validation. In this
chapter, fundamentals such as using Blazor’s built-in form components, validat-
ing user input, and submitting data to a server are tackled.

 Chapter 6 builds on the previous chapter, covering more advanced topics such
as creating custom form components, working with files, and adapting a form
to handle editing existing data.

 Chapter 7 explores how to make components more reusable. It introduces tem-
plated components and how they can be further enhanced using generics.

 Chapter 8 shows how to use JavaScript interop to integrate existing JavaScript
libraries into a Blazor application. It also covers techniques that allow C# code
to call into JavaScript code and JavaScript code to call into C#.

 Chapter 9 tackles securing Blazor applications by showing how to integrate with
an identity provider called Auth0.

 Chapter 10 looks at state management and implements an in-memory state
store. It tackles state store design and how to store state using the browser’s
local storage APIs.

 Chapter 11 covers testing components using the bUnit testing framework. Five
key scenarios are covered: testing rendered markup, triggering event handlers
from test code, faking authentication and authorization, emulating JavaScript
interop, and testing multiple components together.

 Appendices A and B cover code refactoring required as the example applica-
tion grows. Appendix A covers adding a ASP.NET Core Web API to the solution.
If you’re building the example app along with book, appendix A should be
completed between chapters 4 and 5. Appendix B walks through refactoring
the rest of the application to use the Web API introduced in appendix A.
Appendix B should be followed after completing chapter 6 and before starting
chapter 7.

ABOUT THIS BOOKxvi
About the code

This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted. We’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/blazor-in-action. Source code is also
available for chapters 2–11 in my GitHub repository at https://github.com/
chrissainty/blazor-in-action. The code added in the two appendices are incorporated
into the chapters they precede.

 All the code in this book was built using the .NET 6 SDK and Visual Studio 2022.
However, other tools such as Visual Studio Code and the .NET CLI or JetBrains Rider
will run the code as well.

liveBook discussion forum

Purchase of Blazor in Action includes free access to liveBook, Manning’s online reading
platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/blazor-
in-action/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to its readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/blazor-in-action/discussion
https://livebook.manning.com/book/blazor-in-action/discussion
https://livebook.manning.com/discussion
https://github.com/chrissainty/blazor-in-action
https://github.com/chrissainty/blazor-in-action
https://github.com/chrissainty/blazor-in-action
https://livebook.manning.com/book/blazor-in-action

about the author
CHRIS SAINTY is a web developer with over 17 years of experience.
He has been using Blazor since the first experimental preview back
in March 2018 and was one of the first people to start blogging about
it. Chris has published over 75 blog posts on Blazor on his own blog,
while also writing guest posts for Visual Studio Magazine, Progress
Telerik, and Stack Overflow. He is also an active open source devel-
oper and currently maintains some of the most popular Blazor

NuGet packages covering integration with browser local storage APIs to UI compo-
nents such as modals and toasts. Away from the keyboard, Chris is a seasoned confer-
ence speaker and has talked about Blazor at events all over the world. These
contributions have also earned him the Microsoft MVP (Most Valuable Professional)
Award.
xvii

about the cover illustration
The figure on the cover of Blazor in Action is “Homme de Oonolaska,” or “Oonolaska
Man,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797.
Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xviii

Starting your
Blazor journey
We live in exciting times, as .NET developers’ lives have never been better. We can
create apps for any operating system, be it Windows, Linux, iOS, Android, or
macOS, and of course, we can build amazing web-based applications with ASP.NET
MVC, Razor Pages, and Web API, which have allowed us to create robust scalable
and reliable systems for years.

 However, there has long been a missing piece to the puzzle. One thing all of
ASP.NET’s web solutions have in common is that they are server based. We’ve never
been able to leverage the power of C# and .NET to write client-side web applica-
tions; this has always been the domain of JavaScript—but not anymore.

In this chapter, I’m going to introduce you to a revolutionary client-side frame-
work called Blazor. Built on web standards, Blazor allows us to write rich, engaging
user interfaces using C# and .NET. We’ll explore how Blazor can make your

This chapter covers
 Reasons to choose Blazor for your next

application

 Why components are a better way to build UIs

 Hosting models for Blazor
1

2 CHAPTER 1 Starting your Blazor journey
development process more efficient and raise your productivity levels, especially if
you’re using .NET on the server as well. We’ll cover hosting models, an important con-
cept to understand when starting out with Blazor. Next, we’ll begin to explore compo-
nents and the benefits of using them to build UIs. Finally, we’ll discuss the reasons why
you should consider Blazor for your next project.

1.1 Why choose Blazor for new applications?
Arguably, the hardest part of starting a new project in recent times has been selecting
the tech stack—there are just so many choices available. This is especially true in the
frontend world. We must pick a framework (Angular, React, Vue.js), pick a language
(TypeScript, CoffeeScript, Dart), and pick a build tool (webpack, Parcel, Browserify).
If a team is new to this ecosystem, it can seem an almost impossible task to try and
work out which combination of technologies will help make the project a success; it’s
even hard for teams with experience!

 Let’s cover some of the top reasons for choosing Blazor for your next project and
how Blazor can help you avoid some of the issues I’ve just mentioned.

 C#, a modern and feature-rich language—Blazor is powered by C#, the eighth most
popular language, according to the 2021 Stack Overflow Developer Survey (http://
mng.bz/p240). It’s powerful, easy to learn, and versatile. While C# is an object-
oriented language, it’s adopting more and more abilities to enable a more
functional approach, if you prefer. Static typing helps developers catch errors
at build time, making the development life cycle faster and more efficient. It’s
also been around for a long time, currently in its tenth version. It’s stable, well
designed, and well supported.

 Great tooling—The .NET community has been fortunate to have some amazing
tooling. Visual Studio is an extremely powerful, feature-rich, and extensible IDE
(integrated development environment). It’s also 100% free for individuals, open
source work, or non-enterprise teams of up to five people. If you prefer something
more lightweight, then there is Visual Studio Code (VS Code), one of the most
popular code editors today. Both Visual Studio and VS Code are available cross-
platform. Visual Studio is available on Windows and macOS, and VS Code is
available on Windows, macOS, and Linux. There is also a great third-party IDE
by JetBrains called Rider, which is cross-platform running on Windows, macOS,
and Linux.

 .NET Ecosystem—While many new frameworks need to wait for an ecosystem to
build up around them, Blazor can tap into the existing .NET ecosystem. At the
time of writing, Blazor applications target .NET 6 and can, in theory, use any
compatible NuGet package. I say “in theory,” as some packages perform actions
that aren’t allowed in a WebAssembly scenario, such as modifying the filesystem.

 Unopinionated—While other frameworks stipulate how applications must be
written, Blazor does not. There are no preferred patterns or practices for Blazor

http://mng.bz/p240

31.2 Components, a better way to build UI
development; you can write applications using the ones you’re familiar and
comfortable with. If you like MVVM (model-view-viewmodel), go for it. If you
prefer using Redux, have at it. The choice is yours.

 Shallow learning curve—If you’re an existing .NET developer, then the learning
curve for Blazor is quite shallow. Razor, C#, dependency injection, and project
structure will all look familiar to you, and with Blazor being unopinionated
around patterns, you can just use what you’re familiar and productive with. All
this means you can focus on writing features more quickly, rather than learning
the framework.

 Code sharing—If you’re using C# on the server, then Blazor makes an excellent
pairing. One of the most frustrating problems with different client and server
languages is the inability to reuse code. Models or data transfer objects (DTOs)
must be duplicated between server and client; they need to be kept updated, in
sync. This could be a manual process or automated using some kind of code
generation, but this is just another thing to set up and maintain. With Blazor,
everything is C#. Any shared code can be placed in a common .NET class
library and shared easily between server and client.

 Open source—As with many projects at Microsoft, Blazor is fully open source and
the code is freely available on GitHub for you to browse, download, or fork your
own copy. The team works in the open and is guided by developer requests and
feedback. You can even contribute if you wish.

1.2 Components, a better way to build UI
Blazor, as with many modern frontend frameworks, uses the concept of components
to build the UI. Everything is a component—pages, parts of a page, layouts. There are
various types of components in Blazor, as well as multiple ways to design them, all of
which will be explored in future chapters. But learning to think in terms of compo-
nents is essential for writing Blazor applications.

1.2.1 What is a component?

Think of a component as a building
block. You put these building blocks
together to form your application.
These building blocks can be as big
or as small as you decide; however,
building an entire UI as a single com-
ponent isn’t a good idea. Compo-
nents really show their benefit when
used as a way to divide up logical
areas of a UI. Let’s look at an exam-
ple of a user interface structured as
components (figure 1.1).

Layout component

Header component

Home page component

Footer component

Menu
component

Figure 1.1 Example of a layout divided into
components

4 CHAPTER 1 Starting your Blazor journey
Each area of the interface is a component, and each one has a certain responsibility.
You may also notice that there is a hierarchy forming. The layout component sits at
the top of the tree; the menu, header, home page, and footer are all child compo-
nents of the layout component. These child components could, and probably would,
have child components of their own. For example, the header component could con-
tain a logo component and a search component (figure 1.2).

Figure 1.2 Example of nesting components to form a component tree

1.2.2 The benefits of a component-based UI

Many UIs have repeating elements in them. A great advantage to using components is
that you can define an element in a component and then reuse the component wher-
ever the element repeats. This can drastically cut down on the amount of repeated code
in an application. It also makes the maintainability of the application much better—
if the design of that element changes, you need only to update it in a single place.

 To cater to more advanced scenarios, components can define their own APIs, allow-
ing data and events to be passed in and out. Imagine a line-of-business application. It’s
probably safe to assume that within that app there are many places data is displayed in
table format. One approach is to create each table as its own component; however, this
means we would end up with a lot of components that display data in a table. A better
approach is to define a single component that takes in a data set as a parameter and then
displays it in a table. Now we have a single component for displaying data in a table that
we can reuse all over the application. We can also add features to this component, such
as sorting or paging. As we do, this functionality is automatically available to all the
tables in the application, as they are all reusing the same component.

 While often self-contained, it’s possible to have components work together to cre-
ate a more complex UI. For example, let’s take the data table scenario we just talked
about, which could be a single component but could potentially be quite large.
Another approach is to divide it into several smaller components, each performing a
certain job. We could have a table header component, a table body component, and
even a table cell component. Each of these components is performing a specific job,
but they are still part of the overall table component.

1.2.3 Anatomy of a Blazor component

Now that we have a better idea of what components are in a general sense, let’s look at
an example of a component in Blazor. For this, we’ll grab a component from the
Blazor project template. Figure 1.3 shows an example of a component from Blazor’s
standard project template, Counter.razor.

Logo component Search component

Header component

51.3 Blazor, a platform for building modern UIs with C#
Figure 1.3 The sections of a component in Blazor

This particular component is known as a routable component, as it has a page directive
declared at the top. Routable components are essentially a page in the application.
When the user navigates to the /counter route in the application, this component
will be loaded by the Blazor router. It displays a simple counter with a button, and
when the user clicks the button, the count is incremented by one and the new value
displayed to the user.

 While understanding the code isn’t important at this point, we can understand the
structure of the component. Figure 1.3 is divided up into three sections; each has a
certain responsibility.

 Section 1—Used to define directives, add using statements, inject dependencies,
or any other general configuration that applies to the whole component.

 Section 2—Defines the markup of the component; this is written using the Razor
language, a mix of C# and HTML. Here we define the visual elements that
make up the component.

 Section 3—The code block. This is used to define the logic of the component. It
is possible to write any valid C# code into this section. You can define fields,
properties, or even entire classes if you wish.

We’ll be covering components in much greater detail throughout the rest of this
book, so we’ll leave it there for now. But this has given you a taste of what a compo-
nent in Blazor looks like and how it is composed.

1.3 Blazor, a platform for building modern UIs with C#
Blazor is a fully featured framework for building modern client-side applications using
the power of C# and .NET. This allows developers to build engaging applications that
work across nearly any platform, including web, mobile, and desktop.

 Blazor is an alternative to JavaScript frameworks and libraries such as Angular,
Vue.js, and React. If you’ve had experience working with any of these, then you’ll

@page "/counter"

<hl>Counter</hl>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {
 private int currentCount = 0;

private void IncrementCount()
{
 currentCount++;
}

}

6 CHAPTER 1 Starting your Blazor journey
probably start spotting familiar concepts. The most notable influence is the ability to
build UIs with components, a concept all these technologies share and something
we’ll explore in more detail later in this chapter.

 Because Blazor is built on top of web standards, it doesn’t require the end user to
have .NET installed on their machines or any kind of browser plug-in or extension. In
fact, with Blazor WebAssembly applications, we don’t even need .NET running on the
server; this flavor of Blazor can be hosted as simple static files.

 Being built on .NET means we have access to the vibrant ecosystem of packages
available on NuGet. We have best-in-class tooling with Visual Studio, VS Code, and Jet-
Brains Rider. Also, with .NET being cross-platform, we can develop our Blazor
applications on whatever our preferred platform is, be that Windows, macOS, or Linux.

 While this book is going to focus on Blazor for web application development, I
want to highlight that Blazor’s programming model can also be used to build
crossplatform desktop applications. With .NET 6, Blazor Hybrid was introduced. Built
on top of the new .NET Multi-platform App UI (aka MAUI) framework, it works in a
similar way to Electron applications. Content from a Blazor application is rendered
via a BlazorWebView control. This offers a lot of choice in how these applications are
structured. Developers can use Blazor and web technologies to construct the entire UI
— except for the chrome, the outermost container for the application that includes
the title bar. Or they can target only a specific piece of the interface to be written with
Blazor and host that alongside native controls.

 It doesn’t stop there. There has been a long-running experimental project called
Mobile Blazor Bindings (http://mng.bz/OGOO). This is a collaboration between the
ASP.NET Core team and the .NET MAUI team to investigate the potential and demand
for using Blazor’s programming model to build native mobile applications! This really
makes Blazor a compelling technology to learn, as once understood, it could allow
developers to build UIs for almost any platform or device.

 Hopefully, you can already see that Blazor is an exciting technology with a lot of
potential. But there is a key concept that is important to understand before we go any
further—that of hosting models. Let’s tackle that next.

1.3.1 Understanding hosting models

When first getting started with Blazor, you will immediately come across hosting
models. Essentially, hosting models are where a Blazor application is run. Currently,
Blazor has two web-specific hosting models—Blazor WebAssembly and Blazor Server.
Regardless of which model you choose for your application, the component model is
the same, meaning components are written the same way and can be interchanged
between either hosting model (figure 1.4).

 Figure 1.4 shows an abstract representation of Blazor’s architecture with the
separation between the app and component model and the various hosting models.
One of the interesting aspects of Blazor is the potential of other hosting models being
made available over time. This allows Blazor to run in more places and be used to
create more types of UIs.

http://mng.bz/OGOO

71.3 Blazor, a platform for building modern UIs with C#
1.3.2 Blazor WebAssembly

Blazor WebAssembly allows your application to run entirely inside the client’s browser,
making it a direct alternative to JavaScript SPA (single-page application) frameworks.
To help you understand how this hosting model works, we’ll walk through the process
of initializing a Blazor WebAssembly application (figure 1.5).

Figure 1.5 Boot-up of a Blazor WebAssembly application showing the interactions between the
client’s browser and the web server

The process begins when a request is made by the browser to the web server. The web
server will return a set of files needed to load the application. These include the host
page for the application, usually called index.html; any static assets required by the
application, such as images; CSS and JavaScript, as well as a special JavaScript file
called blazor.webassembly.js.

 In the Blazor WebAssembly hosting model, part of the Blazor framework resides in
JavaScript and is contained in the blazor.webassembly.js file. This part of the frame-
work does three main things:

Blazor

App model / component model

Hosting model Hosting model

Figure 1.4 Blazor has a separation
between hosting models and its app/
component model. This means
components written for one hosting
model can be used with another.

Web server

blazor.webassembly.js

dotnet.wasm
(Mono .NET compiled to

WebAssembly)

DOM

Browser

App

Blazor

Browser requests site.

Additional files returned.

- HTML
- CSS
- JavaScript
- Wasm

Request framework and
application files.

Server returns static files:

8 CHAPTER 1 Starting your Blazor journey
 Loads and initializes the Blazor application in the browser
 Provides direct DOM (Document Object Model) manipulation so Blazor can

perform UI updates
 Provides APIs for JavaScript interop scenarios, which we’ll discuss in detail in

later chapters

At this point, you may be wondering why we have a JavaScript file. One of the big sell-
ing points of Blazor is the ability to write UI logic using C# instead of JavaScript, right?
Yes, that’s true. But as of right now, WebAssembly has a large limitation: it can’t alter
the DOM or call Web APIs directly. These features are planned and being worked on
for the next phase of WebAssembly, but until they land, JavaScript is the only way to
perform these tasks.

 It’s possible that in the future this file will no longer be required. This will depend
on how fast features are added to WebAssembly and adopted by browsers. But for now,
it’s an essential part of the framework.

 Now that we’ve cleared that up, let’s get back to booting the Blazor app. I want to
point out that the files returned from the server are all static files; they haven’t
required any server-side compilation or manipulation. This means that they can be
hosted on any service that offers static hosting. There is no requirement for a .NET
run time to be present on the server. For the first time, this opens up free hosting
options such as GitHub pages to .NET developers (this applies to standalone Blazor
WebAssembly applications only).

 Once the browser has received all the initial files from the web server, it can pro-
cess them and construct the DOM. Next, blazor.webassembly.js is executed. This per-
forms many actions, but in the context of starting a Blazor WebAssembly app, it
downloads a file called blazor.boot.json. This file contains an inventory of all the frame-
work and application files that are required to run the app. Once it’s downloaded, it is
used to download the remaining files needed to run the application.

 Most of these files are normal .NET assemblies; there is nothing special about
them, and they could be run on any compatible .NET run time. But there’s also
another type of file that is downloaded called dotnet.wasm. This file is a complete .NET
run time that has been compiled to WebAssembly.

WebAssembly
WebAssembly is a low-level, assembly-like language that can be run in modern web
browsers with near-native performance. Although it’s possible to write WebAssembly
directly, it’s more commonly used as a compilation target for higher level languages
such as C/C++ and Rust. It’s designed to run alongside JavaScript, allowing Java-
Script to call in to WebAssembly and vice versa. WebAssembly also operates in the
same security sandbox as JavaScript applications. Visit https://webassembly.org for
detailed information on WebAssembly.

https://webassembly.org/

91.3 Blazor, a platform for building modern UIs with C#
By default, only the .NET run time is compiled to WebAssembly—the framework and
application files are standard .NET assemblies. However, in .NET 6, an AOT (ahead-
of-time) mode was introduced that allows developers to compile their applications to
WebAssembly. The benefit of this is much improved performance for CPU-intensive
code. Using AOT, CPU-intensive code compiled to WebAssembly will be many times
more performant than the interpreted approach used by default. However, there’s a
tradeoff, and that’s size. AOT-compiled code is around two times bigger than the stan-
dard assemblies, meaning a much larger overall download size for the application.

 Once the blazor.boot.json file has been downloaded and the files listed in it have
been downloaded, it’s time for the application to be run. The WebAssembly .NET run
time is initialized, which in turn loads the Blazor framework and, finally, the applica-
tion itself. At this point, we have a running Blazor application that exists entirely
inside the client’s browser. Aside from requesting additional data (if applicable),
there’s no further reliance on the server.

CALCULATING UI UPDATES

We now understand how a Blazor WebAssembly application boots up. But how do UI
updates get calculated? Just as we did for the initialization process, we’re going to fol-
low a scenario to understand how this happens and what Blazor does (figure 1.6).

 For our scenario, we have a Blazor WebAssembly application with two pages con-
taining only a header: Home and Counter, respectively. The user is on the home page
of the application and will click the link to go to the Counter page. We’ll follow the

blazor.webassembly.js

DOM

Browser

Home

Counter

UI updates
are applied
to the DOM.

Navigation
event is
processed.

User clicks link.

App

Blazor

dotnet.wasm

Figure 1.6 The process of client-side navigation in Blazor WebAssembly, from clicking a link to the
application of UI updates

10 CHAPTER 1 Starting your Blazor journey
process Blazor goes through to update the UI while navigating from the Home page
to the Counter page.

 When the user clicks on the Counter link, the navigation event is intercepted by
Blazor’s JavaScript run time (blazor.webassembly.js). This event is then passed over to
the Blazor framework running on the WebAssembly run time (dotnet.wasm) and is
processed by Blazor’s router component.

 The router checks its routing table for any routable components that match the
route the user has attempted to navigate to. In our case, it will find a match with the
Counter component, a new instance of that component will be created, and the relevant
life cycle methods will be executed.

 Once complete, Blazor will work out the minimum number of changes that are
required to update the DOM to match that of the Counter component. When this is
complete, those changes will be passed back down to the Blazor JavaScript run time,
which will then apply those changes to the physical DOM. At this point, the UI will
update and the user will be on the Counter page.

 All of this has happened client side in the user browser. There was no need for a
server during any point in this process. It’s fair to say that in a real-world application,
you would probably make a call out to a server at some point in this process. This
usually happens during the execution of the life cycle methods of the component
being navigated to in order to load some initial data for the component. But this would
depend on the individual application.

BENEFITS AND TRADEOFFS

Now that we know a bit more about how the Blazor WebAssembly hosting model works,
let’s talk about the benefits and tradeoffs of choosing this model. Let’s start with the
benefits:

 Applications run on the client—This means that there is much less load on the
server, so you can offload much of the work to the client. This could lead to
significant cost savings on server infrastructure and improve the scalability of an
application.

 Can work in offline scenarios—As the app runs entirely inside the browser, there’s
no need for a persistent connection to the server, making applications more
tolerant to unstable network connections. It’s also trivial to enable progressive
web application (PWA) functionality. In fact, Blazor WebAssembly has this as an
option you can select when creating your application.

 Deployed as static files —As Blazor WebAssembly apps are just static files, they can
be deployed anywhere static hosting is available. This opens up some options that
historically have never been available to .NET developers. Services such as
GitHub pages, Netlify, Azure Blob Storage, AWS (Amazon Web Services) S3
buckets, and Azure Static Web Apps are all options for hosting standalone
Blazor WebAssembly applications. The cost of deploying static files is
relatively less compared to hosting web applications in each of the leading
Cloud providers.

111.3 Blazor, a platform for building modern UIs with C#
 Code sharing—Potentially one of the greatest benefits with Blazor WebAssembly is
if you’re using C# on the server. You can now use the same C# objects on your
client as you use on the server. The days of keeping TypeScript models in sync
with their C# equivalent and vice versa are over.

Of course, nothing is a silver bullet, so let’s understand some tradeoffs of this model:

 Payload—When compared to some JavaScript applications, the initial download
size of Blazor apps can be much bigger (although this is improving with every
release). A minimal Blazor app can be produced that weighs in at about 1 MB
when published; however, other apps could be significantly larger. Every
application is different, and there is no standard size for a Blazor app. This is a
onetime cost, though, as the run time and many of the framework assemblies
are cached on the first load, meaning subsequent loads can be as small as a few
KB.

 Load time—A knock-on effect of the payload size can be load time. If the user is
on a poor internet connection, the amount of time required to download the
initial files will be longer, which will delay the start of the application, leaving
the user with a loading message of some kind. This can be offset slightly by
using server-side prerendering; however, while this will give the user something
more interesting to look at initially, the app still won’t be interactive until all
files have been downloaded and initialized. Server-side prerendering for Blazor
WebAssembly apps also requires an ASP.NET Core element on the server, which
negates any free hosting options.

 Restricted run time—This is arguably not a tradeoff as such, but for existing .NET
developers who are used to having relatively free rein over the machine their
apps run on, it’s something to be aware of. WebAssembly applications run in
the same browser sandbox as JavaScript applications. This means, for example,
that you will not be allowed to reach out to the users’ machine and do things
such as access the local file system.

 Code security—Just as with JavaScript applications, your code is downloaded and
run in the browser. Therefore, the user has access to your applications DLLs.
This means you should not include any code that contains intellectual property
in a Blazor WebAssembly application. Any valuable code should be kept on the
server as part of an API.

To summarize, Blazor WebAssembly is the hosting model to choose if you’re looking
to replace a JavaScript SPA framework such as Angular, React, or Vue.js. While there
are a few tradeoffs to consider, there are some substantial benefits to choosing this
model.

1.3.3 Blazor Server

Now that we’ve seen how Blazor WebAssembly works, let’s turn our attention to the Server
hosting model and see how it differs. Blazor Server was the first productionsupported
hosting model for Blazor, being released around 8 months before the Web-Assembly
version. As we did with the previous model, we’ll walk through initializing a Blazor

Server application to help you understand how things work (figure 1.7).

12 CHAPTER 1 Starting your Blazor journey
Figure 1.7 Boot-up process of a Blazor Server application

The process begins with a request to load the site from the browser. When this request
hits the web server, two things could happen: the app is started up, or if the app is
already running, a new session is established. Why would the app already be running?
Unlike Blazor WebAssembly, which behaves more like a desktop application with each
user having their own instance, Blazor Server runs one instance of the app that all
users connect to. Therefore, the app could already be running, and the new request
just establishes a new session. Each user has their own instance of the app, which runs
locally on their machine. Blazor Server is different—only one instance of the applica-
tion runs on the server, but it can support many clients. Therefore, the app could
already be running, and the new request would just establish a new session.

 The request is then processed by the application, and the initial payload is sent
back to the browser. This includes static assets such as CSS and JavaScript files and
images. There is also the initial HTML, but this is compiled rather than the static
HTML we saw in Blazor WebAssembly. This is because the hosting page for a Blazor
Server application is a Razor Page rather than a static HTML page in the WebAssembly
model. The advantage of this is it allows Blazor Server applications to use server-side
prerendering out of the box. In fact, this feature is enabled by default when you cre-
ate this type of Blazor application.

 Once the initial payload is returned to the browser, the files are processed and the
DOM is created—then a file called blazor.server.js is executed. The job of this run time
is to establish a SignalR connection back to the Blazor application running on the
server. At this point, the application is fully booted and ready for user interaction.

SignalR
SignalR is an open source library from Microsoft that allows developers to add real-
time functionality to their applications. Clients connect to a server via a hub, and the
server then pushes updates to the clients in real time using WebSockets (with fallback

blazor.server.js

DOM

Browser Web server

.NET run time

App

Blazor

Browser requests site.

SignalR connection is
established.

- HTML
- CSS
- JavaScript

Server returns static files and
compiled HTML:

131.3 Blazor, a platform for building modern UIs with C#
CALCULATING UI UPDATES

What happens when a user interacts with the application? We saw earlier that in
Blazor WebAssembly the events are processed right there in the browser along with
calculating any UI updates and applying them to the DOM. But that can’t happen
here, as the application is running on the server.

 We’ll follow the same scenario as we did with Blazor WebAssembly. We have a
Blazor Server application with two pages containing only the headers Home and
Counter, respectively. The user is on the Home page of the application and will click a
link to go to the Counter page. We’ll follow the process Blazor goes through to update
the UI while navigating from the Home page to the Counter page (figure 1.8).

Figure 1.8 Process of updating the UI in Blazor Server

The user clicks the link in the menu, and the click event is intercepted by Blazor’s run
time on the client. The run time then processes the event to understand what has hap-
pened. In this case, there are two things—a mouse click event and a navigation event,
due to it being a hyperlink that was clicked. These two events are then bundled up
and sent back to the server over the SignalR connection that was established when the
application started.

to other technologies when required). A common example of using SignalR is to cre-
ate real-time chat applications.

While SignalR is used in Blazor to transport events and UI updates back and forth
between client and server, it’s considered an implementation detail of the framework
and not something a developer working with Blazor Server would need to configure or
interact with. Visit https://dotnet.microsoft.com/apps/aspnet/signalr for detailed
information on SignalR.

blazor.server.js

DOM

Browser Web server

Click event and location
changed event sent to server.

UI updates sent back to client.

SignalR connection

.NET run time

App

Blazor

Home

Counter

User clicks link.

https://dotnet.microsoft.com/apps/aspnet/signalr

14 CHAPTER 1 Starting your Blazor journey
 On the server, the message sent from the client is unpacked and processed. The
Blazor framework then calls any application code necessary. In this case, it would
instantiate an instance of the Counter page component and execute the relevant life
cycle methods.

 Once this process is complete, Blazor will work out the minimum number of changes
needed to make the current page transform to the Counter page and then send these
back to the client via the SignalR connection. Just to be clear, Blazor will not send
back an entirely new page to the client. It will send back only the minimum number
of instructions needed to update the current DOM to match the Counter page. In our
case, the only difference is the heading. Blazor will send back a single instruction to
change the text in the heading from Home to Counter. Nothing else will be changed.

 Once back on the client, the changes are unpacked and the required changes are
applied to the physical DOM. From the user’s perspective, they appear to have
navigated to a new page in the application, the Counter page. But they are still on the
same physical page; it just has a different header.

 You may have spotted this already, but the overall process isn’t any different to
how Blazor WebAssembly worked; it’s just been stretched out a bit over that SignalR
connection. Blazor Server is just as much an SPA as Angular, Vue.js, or Blazor
WebAssembly. It just happens to run its logic and calculate UI updates on the server
instead of the client. In fact, I bet if you were presented with two identical applications,
one written in Blazor Server and one in Blazor WebAssembly, you wouldn’t be able to
tell the difference between them, as a user.

PERFORMANCE

Before we discuss the benefits and tradeoffs for this model, I want to quickly mention
performance. With all the network chatter that goes on in this hosting model, you
might have wondered whether this will scale particularly well.

 In 2019, the ASP.NET Core team did some testing to establish the performance levels
of Blazor Server apps. They set up an application in Azure and tested it on differently-
powered virtual machines, checking the number of active users the application could
support. Here are the results:

 Standard D1 v2 instance (1 vCPU and 3.5 GB memory)—Over 5,000 concurrent
users

 Standard D3 v2 instance (4 vCPU and 14 GB memory)—Over 20,000 concurrent
users

As you can see, Blazor Server is no slouch when it comes to performance. The main
factor the team found that affects the number of clients that can be supported is
memory. This makes sense, as the server needs to keep track of all the clients that are
connected to it—the more clients there are, the more information needs to be stored
in memory.

 The other major finding from testing was how network latency affected the
application. As all interactions are sent back to the server for processing, latency can

have a

151.3 Blazor, a platform for building modern UIs with C#
large impact on usability. If the server is located 250 milliseconds (ms) away from the
client, then each interaction is going to take at least 500 ms to be processed, as it must
travel to the server (250 ms), then be processed, then travel back again (250 ms).

 Testing found that when the latency went above 200 ms, then the UI began to feel
sluggish and less responsive. As a rough rule, you always want your users to be on the
same continent as the server. If you want to have a globally available Blazor Server
application, then you need to have your app evenly distributed across the world, aiming
to keep all clients within 200 ms of a server.

BENEFITS AND TRADEOFFS

As we did before, let’s look at the benefits and tradeoffs of choosing a Blazor Server
application.

 Small payload—As the application is running on the server as opposed to the
client, the initial download is significantly smaller. Depending on static assets
such as CSS and images, a Blazor Server application can be as small as 100–200
KB.

 Fast load time —With a much smaller payload, the application loads much faster.
The server-side prerendering also helps, as the user never sees a loading message.

 Access to the full run time—The application code is executing on the server on
top of the full .NET run time. This means you can do things such as access the
server’s file system if necessary without hitting any security restrictions.

 Code security —If you have code that is proprietary, and you don’t want people
being able to download and interrogate it, then Blazor Server is a good choice.
The application code is all executed on the server, and only the UI updates are
sent to the client. This means your code is never exposed to the client in any way.

 There are some good benefits to Blazor Server, but what do the tradeoffs look like?

 Heavy server load—Where Blazor WebAssembly allows us to utilize the power of the
client, Blazor Server does the complete opposite. Almost all of the work is now
being performed by the server. This means you might need a larger investment
in your infrastructure to support Blazor Server apps. Depending on the size of
the application, load balancing may also be required to correctly manage the
SignalR-based sessions used by Blazor Sever.

 Doesn’t work offline—Where Blazor WebAssembly takes offline working in stride,
Blazor Server does not. The SignalR connection is the lifeline of the application,
and without it, the client can’t function at all. By default, this results in an overlay
with a message saying the client is attempting to re-establish the connection. If
this fails, the user has to refresh the browser to restart the application.

 Latency —Due to its design, Blazor Server apps are sensitive to latency issues.
Every interaction the user has with the application must be sent back to the
server for processing and await any updates that need to be applied. If there is a
high latency in the connection between client and server, a noticeable lag
manifests in the UI and actions quickly feel sluggish. In real numbers, a
latency above 200 ms will start causing these issues.

16 CHAPTER 1 Starting your Blazor journey
 Requires a stable connection—Continuing on from the need for low latency and
tying in with the inability to work offline, Blazor Server apps need to have a sta-
ble internet connection. If the connection is intermittent in any way, the user
will continually see the reconnecting overlay in their application, which quickly
becomes very disruptive. An obvious scenario where this could occur is when a
user is on a mobile device, which has intermittent connection.

In summary, if you’re looking for a fast-loading application and you have users with a
fast and stable network connection, then Blazor Server is a great choice. You’re also
getting code security thrown in when choosing this hosting model.

1.3.4 Other hosting models

Before we wrap up this chapter, I want to make you aware of two other hosting
models—Blazor Hybrid and Blazor Mobile Bindings. I won’t go into great detail on
these, as they are not the focus of this book, but knowing they exist illustrates the
scope of what can be built with Blazor.

BLAZOR HYBRID

Blazor Hybrid is built on technology from the .NET MAUI framework and allows
developers to use Blazor to write cross-platform desktop applications. Components
are written using C#, HTML, and CSS, just as with Blazor WebAssembly and Blazor
Server, and are rendered using a control called BlazorWebView. The following listing
shows an example of a component that runs in a Blazor Hybrid application.

<div>
 <p>Current count: @currentCount</p>
 <button @onclick="IncrementCount">Click me</button>
</div>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 currentCount++;
 }
}

A big benefit of Blazor Hybrid is that it can run components that can also run in
Blazor WebAssembly or Blazor Server. The code shown in listing 1.1 can execute on all
three hosting models without any modification.

MOBILE BLAZOR BINDINGS

Mobile Blazor Bindings is an experimental hosting model and takes a different
approach to authoring components. Components for this hosting model must be writ-
ten using native controls. The following listing contains the same component as listing
1.1 but is rewritten for the Mobile Blazor Bindings hosting model.

Listing 1.1 A component that runs on Blazor Hybrid

17Summary

<StackLayout>
 <Label> Current count: @currentCount </Label>
 <Button OnClick="@IncrementCount">Click me</Button>
</StackLayout>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 currentCount++;
 }
}

As you can see, the programming model is the same between the two code samples.
The logic in the code block is unchanged; it’s just C# after all. The only difference is
in the markup, where web technologies have been swapped for native mobile con-
trols. This means that we can’t swap components around between web-based hosting
models and native hosting models. However, once we’ve mastered Blazor’s program-
ming model, we can easily use that knowledge to create other types of UIs.

Summary
This chapter has been an introduction to the Blazor framework. We’ve touched on
many great features of Blazor and introduced quite a few concepts that probably don’t
make much sense right now. Don’t worry; in the coming chapters will explore all these
and more, in detail. For now, here’s a summary of what we’ve covered:

 Blazor allows developers to use the power of C# and .NET to create rich interac-
tive UIs without the need for JavaScript.

 Blazor is an SPA framework that can run entirely inside the browser via Web-
Assembly, an open web standard, or on the server utilizing a SignalR connec-
tion to link the client’s browser with the application.

 Blazor WebAssembly can be used with any existing server technology. However,
there are real benefits when using it with an ASP.NET Core backend, as code
can easily be shared via a .NET class library.

 Applications are written using components. Components allow us to create self-
contained pieces of UI that can work alone or in combination with each other.

Listing 1.2 A component that runs on Mobile Blazor Bindings

Your first Blazor app
After reading chapter 1, you should have a good idea of what Blazor is and how it
works. You should also now understand the concept of hosting models and have
some compelling reasons why you might want to choose Blazor for your next proj-
ect. But so far, we’ve only talked in theory. We still need to get our hands dirty
building something with Blazor, and that’s going to happen in this chapter.

 We’re going to create the application that we’ll be building throughout the rest
of the book—Blazing Trails! The app will allow walkers to discover new routes to
explore, as well as add and update routes of their own. As we build this app, you will
learn about the key features of Blazor, things such as routing, forms and validation,
and authentication.

This chapter covers
 Choosing the right project template for your

application

 Building and running your application

 Understanding the key parts of your application

 Writing your first components
18

192.1 Setting up the application
 In this chapter, we begin by looking at the available templates provided by Micro-
soft to create a new application. Templates are a great way to get started quickly, and
they provide all the primary building blocks we need for a working application. Once
we understand the options, we’ll then choose a template as the base for our Blazing
Trails app. We’ll build and run the template so we can get a feel for how it behaves;
then we’ll strip out all the unnecessary parts, leaving us with only the key components.
We’ll write our first components, and by the end of the chapter, we will have an app
that looks like figure 2.1.

Figure 2.1 A preview of the Blazing Trails application we will build in this chapter

2.1 Setting up the application
In other frameworks, setting up a new application involves creating everything manu-
ally, from scratch. While this has the benefit of creating only what is necessary, it can
be a tedious and repetitive process. Generally speaking, .NET applications aren’t cre-
ated this way. Many, if not all, start life being generated from a template. Using a tem-
plate has many advantages:

20 CHAPTER 2 Your first Blazor app
 Developers can have a working application in seconds.
 Boilerplate code is taken care of and doesn’t need to be written for every new

application.
 The template serves as a working example of using the framework.
 The process is repeatable. Using a template will give you the same starting point

time and time again.

Blazor comes with two templates that can be used to create new applications. When
choosing a template, we’re essentially making the choice of which hosting model we
want to use, either Blazor Server or Blazor WebAssembly. In fact, the two available
templates are named Blazor Server and Blazor WebAssembly, which makes knowing the
hosting model they use straightforward. In this book, we’re going to be using Blazor
WebAssembly to build our Blazing Trails application, so that is the template type we’ll
focus on in this chapter.

2.1.1 Blazor WebAssembly template configurations

Before we create the application, I want to talk about the configuration options available
for the Blazor WebAssembly template. This template is the more complex of the two
available because you can configure it in two modes, hosted or standalone (figure 2.2).

What if I want to use Blazor Server?
If you’re interested in the Blazor Server hosting model instead, don’t worry, this book
will still be just as useful to you. As I mentioned in chapter 1, hosting models only
dictate where the code runs, not its behavior. Therefore, you will be able to follow
along with everything in this book using the Blazor Server template. On odd occasions
there will be slight differences in configuration between Blazor WebAssembly and
Blazor Server apps, and I will call those out at the relevant time.

Blazor WebAssembly
hosted

Blazor WebAssembly
standalone

Client project
(Blazor WebAssembly)

Client project
(Blazor WebAssembly)

Server project
(ASP.NET Core Web API)

Shared project
(.NET class library)

Figure 2.2 The left side shows
the project created when
configuring the template in
standalone mode. The right
side shows the projects
created when configuring the
template in hosted mode.

212.1 Setting up the application
In the standalone mode, which is the default configuration, you will end up with a single
Blazor WebAssembly project in the solution. This template is great if you’re looking
to build an application that doesn’t need any kind of backend or server element to it
or if you already have an existing API.

 Hosted mode is a little bit more complex. If you enable the ASP.NET Core Hosted
option when creating the template, you will end up with three projects in the solution:

 Client Project—Blazor WebAssembly
 Server Project—ASP.NET Core Web API
 Shared Project—.NET class library

In this configuration, you are getting a full-stack .NET application—a fully
functioning backend (ASP.NET Core Web API), a place to put code that is shared
between the frontend and backend project (.NET class library), and the frontend
project (Blazor WebAssembly).

 I want to highlight that using this configuration does require a .NET run time to
be installed on the host server. Recall from chapter 1, an advantage of using Blazor
WebAssembly is that it doesn’t require a .NET run time on the server. That benefit
doesn’t apply when you’re using the hosted configuration. This is because there is a
full ASP.NET Core web API project in the solution that does need a .NET run time on
the server to function.

 Now that we understand our options, which are we going to choose for our Blazing
Trails application? Well, to get started, we’re going to choose the simpler standalone
configuration. By the end of the book, we will have an application that is essentially
the same as the hosted template, but to learn the most about Blazor, we’ll build up to
it over the coming chapters.

2.1.2 Creating the application

There are two ways to create a new application using a template, the .NET CLI
(command-line interface) or an IDE (integrated development environment) such as
Visual Studio or JetBrains Rider. From my experience, most .NET developers tend to
prefer using an IDE to create their applications. Throughout this book, I will be using
Visual Studio for Windows. But you can easily follow along using the .NET CLI and an
editor such as VS Code. To create the application, open Visual Studio and take the
following steps (figure 2.3). There may be slight differences in wording or order of
screens on other IDEs:

1 File > New Project.
2 From the project templates list, select Blazor WebAssembly App.
3 The next screen allows us to set the name of the project and the solution, as

well as where the files will be saved on disk. Enter the details as per figure 2.3,
and then click Create to move to the next step.

4 The second configuration screen allows us to specify some additional settings
for the solution. At this point, we can take the default settings that are shown in
figure 2.4.

22 CHAPTER 2 Your first Blazor app
Figure 2.3 The first application configuration dialog. This allows the name of the project
and solution to be specified along with where the final application files will be created.

Figure 2.4 The second application configuration dialog. This allows additional information
about the solution to be configured.

Name the project
BlazingTrails.Client.

Choose the location
where the template
will be created.

Name the solution
BlazingTrails.Client.

Leave Authentication
type set to None.

Ensure only Configure
for HTTPS is checked.

232.1 Setting up the application
5 After a few seconds, Visual Studio will generate the application using the tem-
plate and settings we’ve specified. Once this is done, you will see the project
files, as shown in figure 2.5.

Figure 2.5 Visual Studio showing the files generated from the template inside of the solution
explorer window

Using the .NET CLI
If you prefer using the command line, then you can create the same application using
the .NET CLI. In order to replicate the exact structure we did with the IDE, you will
need to run the following commands:

dotnet new blazorwasm -o BlazingTrails/BlazingTrails.Client
dotnet new sln -n BlazingTrails
dotnet sln add BlazingTrails\BlazingTrails.Client

This will create a new application with the same configuration and folder structure we
set up using Visual Studio. We are telling the .NET CLI to create a new Blazor Web-
Assembly application and output the result of that command into the folder specified
with the -o switch. We’re then creating a new solution and adding the Blazor Web-
Assembly project to that solution.

Solution Explorer
showing the project
files generated
by the template

24 CHAPTER 2 Your first Blazor app
At this point, you’ve created your first Blazor application. Congratulations! Now that
we have our shiny new application, let’s look at how we can build and run it.

2.2 Building and running the application
When it comes to running .NET applications, there are three steps that need to happen:

1 Restore any packages (also referred to as dependencies).
2 Compile or build the application.
3 Fire up a web server and serve the application.

In previous versions of .NET, these steps needed to be performed manually, so you
would need to first restore any packages, then build the code, and finally run the app.
However, this is no longer the case. We can now jump straight to running the
application, and either Visual Studio or the .NET CLI will take care of performing the
first two steps, if they’re required.

 However, it’s always good to understand how to manually perform these steps yourself
if the need arises. When using Visual Studio, you can restore packages by rightclicking
on the solution and selecting Restore NuGet Packages from the Context menu. If
you’re using the .NET CLI, then you can execute the dotnet restore command.

 To perform a build from Visual Studio, select Build > Build Solution from the top
menu. You can also use a keyboard shortcut to perform the same task: Ctrl+Shift+B.
From the .NET CLI, you can use the dotnet build command. Performing a build
will also perform a package restore, if it’s required, both when using Visual Studio or
the CLI. So, having to manually restore packages shouldn’t be an issue.

 All that’s left is to run the application. From Visual Studio, this can be done in several
ways. First, you can click the Play button found in the main toolbar. You can also use a
keyboard shortcut, which is F5. Finally, you can select Debug > Start Debugging from
the top menu. Any of the above will run the application, and Visual Studio will fire up
a browser and load the application automatically.

 Depending on the type of applications you’ve created and run before, you could see
an extra step that asks if you want to trust the development SSL certificate. Answering
yes to this will install the development certificate on your machine, and this allows the
application to be run over https rather than http. I would recommend trusting and
installing the development SSL certificate—running sites over https is best practice,
even in development, as it mimics the live environment.

 If you’ve followed these steps, you should see the application running as shown in
figure 2.6. If you’re using the CLI to run your application, then you can execute the
dotnet watch command. This is a much better choice than the standard dotnet
run command, as it will not only automatically start the browser, but it will also watch
the source files in the project for changes and apply those changes via the hot reload
feature that shipped with .NET 6. This means most simple edits, such as applying new
CSS classes or changing markup, will be applied almost instantly without losing the
state of the application—a huge productivity boost.

252.3 Key components of a Blazor application
Welcome to your first Blazor app! There are three pages provided by the template: the
Home page, the Counter page, and the Fetch Data page. Figure 2.6 shows the Home
page. The Counter page displays a simple counter with a button that can be clicked to
increment the count. The Fetch Data page displays a list of weather forecast data in a
table that is loaded from an external source (a JSON file in the standalone template).

 Feel free to click around and get a feel for what it’s like to use it. Once you’re
familiar with the application, we’ll move on and look at the key components that
make up the application.

2.3 Key components of a Blazor application
While the template has generated several files, not all of them are important to under-
stand. In this section, we’re going to look at the key files you should understand, what
they do, and why they’re important. Then we’re going to remove all the other files
from our project to give us a clean base ready to start building Blazing Trails.

2.3.1 Index.html

Index.html is one of the most important components of a Blazor WebAssembly appli-
cation. It can be found in the wwwroot directory of the project, and it’s the host page
for the Blazor application. See figure 2.7 for a breakdown of the key elements.

 The key element in the index.html file is the link to the Blazor JavaScript run time
(blazor.webassembly.js), found near the bottom of the page. As we saw in chapter 1,
this is the file that downloads the .NET WebAssembly-based run time, as well as the
application and any of its dependencies. Once this is complete, it also initializes the
run time, which loads and runs the application.

 When the application runs, its content needs to be outputted somewhere on the
page; by default, this is outputted to a div with the ID of app. The fact that the ele-
ment is a div isn’t important; it could be any HTML element—within reason. It’s the
id="app" that is important. This is configurable and is set up in the Program.cs file,
which we’ll look at in a second. Any default content that exists in the tag will be

Figure 2.6 The initial
page of the application
generated using the Blazor
WebAssembly template

26 CHAPTER 2 Your first Blazor app
replaced at run time with the output from the application. This has a useful benefit:
initial content can be used as a placeholder, which will be displayed to the user until
the application is ready. An example of this is shown in figure 2.7, where a loading
message is displayed.

 If an unhandled exception is ever caused inside the application, then Blazor will dis-
play a special UI that signals to the user that something has gone wrong. This is defined
here in the index.html. This can be customized however you like, but the containing
element must have an id attribute with the value blazor-error-ui. The default mes-
sage, shown in figure 2.8, states there has been a problem and offers the user a button
that will cause a full page reload, essentially restarting the application. This is the only
safe option at this point, as the application will be in an unknown state.

 The final key piece to the index.html file is the base tag. This is an important tag
when it comes to client-side routing—something we’ll talk about in greater detail in
chapter 4. This tag is important because it tells Blazor’s router which URLs, or routes,
are in scope for it to handle. If this tag is missing or configured incorrectly, then you
may see some unexpected or unpredictable behavior when navigating your applica-
tion. By default, the tag is configured with a value of /. This means that the applica-
tion is running at the root of the domain—for example, www.blazingtrails.com—and
the router should handle all navigation requests within that domain. However, if the
application is running as a subapplication—for example, www.blazorapps.com/
blazingtrails—then the base tag needs to reflect this with a value of /blazing-
trails/. This means the router will handle only navigation requests that start with
/blazingtrails/. It’s important to make sure the value you enter for the base tag
ends with a /. If this is missed, the browser will remove any value until it finds a /. For
example, /blazingtrails/ will be used as-is, and /blazingtrails will become /.

The base tag is used by Blazor’s
router to understand which routes
it should handle.

This div is where the Blazor application will load.

This div is displayed automatically by Blazor
when an unhandled exception occurs.

Blazor’s JavaScript run time downloads
and initializes the application.

Figure 2.7 Breakdown of the key elements in the index.html page of a Blazor
WebAssembly application

272.3 Key components of a Blazor application
Figure 2.8 The default error UI displayed by Blazor when an unhandled exception occurs in
the application. The user is presented with the option to reload the application to get back to a
working state.

2.3.2 Program.cs

Just like other ASP.NET Core applications, Blazor apps start off as .NET console apps.
What makes them a Blazor application is the type of host they run. In the case of
Blazor WebAssembly, it runs a WebAssemblyHost. The purpose of the code con-
tained in this file is to configure and create that host. Figure 2.9 shows the default con-
figuration of the Program class.

Figure 2.9 The default Program class for a Blazor WebAssembly application, found in the
Program.cs file

Default error Ul displayed by Blazor
when an unhandled exception occurs

Creates an instance of a WebAssemblyHostBuilder

Defines the root components
for the application

Configure and register services
with the IServiceCollection.

Build and run an instance of WebAssemblyHost using the
configuration defined with the WebAssemblyHostBuilder.

28 CHAPTER 2 Your first Blazor app
 Beginning with .NET 6, by default, the Program.cs file uses a new syntax called
toplevel statements (originally introduced in C# 9). Essentially, this removes a lot of the
boilerplate from the file with the goal of lowering the barrier of entry into the .NET
ecosystem. This means there is no longer a namespace definition or a Program class with
a static Main method. We can just start writing code, and everything just works. As you
might have guessed, under the hood, the compiler is still generating a Program class
with a static Main method; we just don’t need to worry about it now. You can learn
more about top-level statements on the Microsoft Docs site (http://mng.bz/nNE4).

 There are two critical pieces of configuration happening in figure 2.9: the root
components for the application are defined, and any services are configured and added
to the IServiceCollection. When defining the root components, we are giving the
builder two pieces of information—the type of components and where they should be
injected into the host page.

 By default, the template comes with two root elements defined. The first registers
the App component. This is the entry point to the application, and we’ll be looking at
this next. The second is the HeadOutlet component. This is new in .NET 6 and enables
us to make modifications to the head element in the host page—things like updating
the page title or setting meta tags.

 Blazor needs to know where these root components will be placed in the host page.
The argument the builder.RootComponents.Add method takes is a CSS selector,
which is used to identify the target element where the component will be injected.
Specific elements or elements with a specific ID can be targeted—for example, #root-
component or any other valid CSS selector. To learn more about CSS selectors, visit
www.w3schools.com/cssref/css_selectors.asp.

 The next line shows the HttpClient being configured and registered with the
IServiceCollection, making it available to classes and components via dependency
injection (DI). Blazor uses the same DI container as other ASP.NET Core apps and
allows registering of services using one of three lifetimes:

 Transient—A new instance is provided each time it’s requested from the service
container. Given a single request, if two objects needed an instance of a transient
service, they would each receive a different instance.

 Scoped—A new instance is created once per request. Within a request, you will
always get the same instance of the service across the application.

 Singleton—An instance is created the first time it’s requested from the service
container, or when the Program.Main method is run, and an instance is
specified with the registration. The same instance is used to fulfill every request
for the lifetime of the application.

While it uses the same system for DI, the scopes behave a little differently in Blazor
applications. For Blazor WebAssembly, Scoped and Singleton behave the same. This
is because there is no request in a Blazor WebAssembly application. It is downloaded
and executed in the client browser. As there is no request for the Scoped lifetime to

http://mng.bz/nNE4
https://www.w3schools.com/cssref/css_selectors.asp

292.3 Key components of a Blazor application
bind to, any Scoped services will live for the lifetime of the application—making them
the same as Singleton services.

 The last thing the Main method does is take all the configurations specified with
the WebAssemblyHostBuilder and call its Build method. This will create an
instance of a WebAssemblyHost, which is the heart of your Blazor app. It contains all
the application configurations and services needed to run your app.

2.3.3 App.razor

This is the root component for a Blazor application, and we saw how this was config-
ured in the Program.cs file in the previous section. This doesn’t have to be the case;
however, you can configure a different component to be the root component if you
wish. Or you can even have multiple root components. You just need to update the
configuration in the Program.Main method.

 The App component contains a vital component for building multipage applica-
tions—the Router component. This component is responsible for managing all
aspects of client-side routing. When an application first starts up, the router will use
reflection to scan the application’s assemblies for any routable components (we’ll talk
about these in more detail in chapter 4, but they’re essentially pages). It then stores

Where’s the Startup class?
If you’ve worked with other ASP.NET Core applications in the past, you may be asking
yourself why we’re configuring services inside of Program.cs and not inside the
Startup class. The answer is because the Startup class no longer exists in the
default templates.

Beginning with .NET 6, the default ASP.NET Core templates no longer specify a Pro-
gram.cs file and a Startup.cs file. This is because the templates now use top-level
statements by default and push all configuration into a single Program.cs file.

However, Blazor WebAssembly dropped the Startup class back in .NET Core 3.1
because it wasn’t necessary. The Startup class contained two methods,
ConfigureServices and Configure. The first of these, ConfigureServices,
was used to configure and register services with the service container. Configure
was used to configure the middleware pipeline for the application.

However, in Blazor WebAssembly, there is no middleware, as there is no request.
Blazor WebAssembly (or any SPA framework, for that matter) acts far more like a
desktop application than a traditional server-based web app. Once it’s loaded, it pro-
cesses interactions locally in the user’s browser and only makes requests back to
the server for additional data.

This means that the Configure method was not needed in the Startup class,
which only leaves the ConfigureServices method. The Blazor team felt it was not
necessary to have two files with only a single method inside them, so they moved the
service registration over to the Program.Main method and removed the Startup
class.

30 CHAPTER 2 Your first Blazor app
information about them in a routing table. Whenever a link is clicked or navigation is
triggered programmatically, the router will look at the requested route and try to find
a match in the routing table. If a match is found, then it will load that component;
otherwise it will load a Not Found template, which is specified inside the Router
component.

 We’re going to cover the Router component in detail in chapter 4, so don’t worry
if this all sounds a bit confusing right now. It’s just important to know that the Router
component resides inside the App component and is responsible for handling the
routing in the application.

2.3.4 wwwroot folder and _Imports.razor

I’m going to cover both of these files in this section, as there is not a huge amount to
say about them. In fact, the _Imports.razor file is one component that is not required
to run a Blazor application—but having one does make things easier.

 By convention, all ASP.NET Core applications have a wwwroot folder, which is
used to store public static assets. This is the place where you can put things such as
images, CSS files, JavaScript files, or any other static files you need. Anything you put
in this folder will be published with your application and available at run time. As I
mentioned earlier, this is also where the index.html file is kept.

 The _Imports.razor file is optional when building a Blazor application. However,
it’s useful to have at least one of these files. Its job is to store using statements. The
benefit is that those using statements are made available to all the components in the
file’s directory and any subdirectories. This saves you having to add common using
statements to every component in your application.

 As I alluded to, you can have multiple _Import.razor files throughout your project.
This allows us to specify using statements that apply only to a certain set of components
based on the file structure. For example, if we had a structure of BlazingTrails > Features
> Home and we wanted a set of using statements to be applied only to components
in the Home folder, we could add an _Imports.razor file to that folder and add the
using statements we require. These would then only be applied to components in
the Home folder.

2.4 Writing your first components
We’ve had a look at the app created by the template, and we’ve covered each of the
key files and, at a high level, what they do. Now it’s time to write some code of our
own. As I said at the start of the chapter, we’re going to build the foundations of the
Blazing Trails application, which is shown in figure 2.10.

 First, we will talk about how the application files are going to be organized. Second,
we’ll remove all the unneeded files that were generated by the template. This will give
us a clean base to start building from. Finally, we’ll define several new components to
create what you see in figure 2.10: a layout component, a page component, and a
couple of regular components. Sounds fun? Let’s get going!

312.4 Writing your first components
Figure 2.10 The Blazing Trails application that we’re building in this chapter

2.4.1 Organizing files using feature folders

Before we start adding our own code, we need to remove all the unnecessary files
generated by the template. By default, the app structure used by the template divides
files by responsibility. There’s a Pages folder for routable components, and there’s a
Shared folder for anything that is used in multiple places or is a global concern. This
kind of separation doesn’t scale well and makes adding or changing functionality
much more difficult, as files end up being spread out all over the place. Instead, we’re
going to use a structure called feature folders to organize our application.

 When using feature folders, all the files relating to that feature are stored in the same
place. This has two major benefits. First, when you go to work on a particular feature,
all the files you need are in the same place, making everything easier to understand
and more discoverable. Second, it scales well. Every time you add a new feature to the
app, you just add a new folder and everything goes in there. You can also arrange each
feature with subfeatures if they contain a lot of files. Figure 2.11 shows an example of
both structures side by side.

32 CHAPTER 2 Your first Blazor app
Figure 2.11 A side-by-side comparison of organizing files by responsibility/type
or by feature. The list on the left shows files organized by responsibility/type,
while the list on the right shows the same files organized by feature.

In figure 2.11, I’ve only shown components, but you should put any files that relate to
that feature in the folder—C# classes, TypeScript files, CSS files, anything at all. Static
assets such as images are the only exception to this. These need to be placed in the
wwwroot folder; otherwise they will not be available at run time, as static files are
served only from that folder. However, you can mirror your feature folder structure in
the wwwroot folder if you wish.

The other little thing I like to do when using this organization system with Blazor is
to append any routable component with the word Page. When a feature has several
other components in it, it’s almost impossible to identify the routable component eas-
ily. The only real way to know is to open the file and check for the @page directive at
the top. By adding page to the end, it makes this obvious at a glance and saves having
to go poking around in various files.

Account.razor

Pages

ProductList.razor

Product.razor

ShoppingBasket.razor

AccountPage.razor

Account

Features

Summary.razor

Details.razor

AddressList.razor

ProductListPage.razor

ProductList

ItemSummary.razor

ItemSummary.razor

PaymentOptions.razor

DeliveryOptions.razor

ProductPage.razor

Product

ShoppingBasketPage.razor

ShoppingBasket

Details.razor

StockAndPrice.razor

AccountDetails.razor

Components

Button.razor

Table.razor

Shared

Button.razor

Table.razor

Shared

AccountSummary.razor

AddressList.razor

ItemSummary.razor

ProductDetails.razor

ProductStockAndPrice.razor

ShoppingBasketItemSummary.razor

ShoppingBasketPaymentOptions.razor

ShoppingBasketDeliveryOptions.razor

332.4 Writing your first components
 Now that I’ve hopefully convinced you of the value of using feature folders, we’re
going to start to put them into practice. We’re going to remove a load of the files from
our Blazing Trails application to give us a fresh slate to start building. Then we will
start adding new features using the feature folder structure.

 Start by deleting the Pages and Shared folders along with their contents. Then
delete the Sample-Data folder from the wwwroot folder. Also delete most of the con-
tents of the app.css; just leave the import statement for the open iconic styles and the
class called #blazor-error-ui and #blazor-error-ui .dismiss. We also need
to delete the last using statement from the _Imports.razor file, @using Blazing-
Trails.Client.Shared.

 We have removed all the bits we don’t need, so the project should now look like
figure 2.12. It also won’t build, but don’t worry; we’re going to add a few things, and
then we can get back to a working build.

Figure 2.12 The solution explorer panel on the right shows the state of the application once
all the unneeded files have been removed. The main panel shows the app.css once the
boilerplate CSS classes have been stripped out.

Add a new folder at the root of the project called Features. Inside that folder, add a
folder called Layout and another called Home. Inside Layout, add a new Razor compo-
nent called MainLayout.razor. Inside Home, add a new Razor component called
HomePage.razor. Once you’ve done that, head back over to the _Imports.razor and
add the following using statements:

@using BlazingTrails.Client.Features.Home
@using BlazingTrails.Client.Features.Layout

34 CHAPTER 2 Your first Blazor app
At this point, your solution should look like figure 2.13.

Figure 2.13 The new structure of the project using feature folders

You can now build the application, and you shouldn’t see any build errors. However,
you can’t run the application just yet—there would be an error. We still have a few
things to configure. Next, we’re going to briefly look at styling before moving on and
defining the layout for Blazing Trails.

2.4.2 Setting up styling

The Blazor templates ship with a CSS framework called Bootstrap. As this is a popular
choice among developers for styling applications, and as it’s already included, we’re
going to use it for Blazing Trails. (You can visit the Bootstrap docs site to learn more
about how the framework works and the full range of features it offers: http://mng
.bz/J26a.)

 I’ve created some custom images to brand the application. There is a logo
(logo.png) and a background for the navbar (navbar-bg.jpg). These can be found on
the GitHub repo that accompanies this book (https://github.com/chrissainty/blazor
-in-action) and will need to be placed in a new folder under wwwroot called Images.
Feel free to use your own images if you prefer. Keeping the same names means all the
code in this book will just work. If you do change the names, just make sure to update
the code in the relevant places.

 Before we move on to layouts, we’re going to add some custom styles to the app.css
file. By adding the styles here, they will affect the whole application. These styles will
customize the look of some common elements, such as links and buttons, as well as
the navbar. Open the app.css in the wwwroot > css folder. Then copy in the code from
the following listing.

New features folder that will contain
all of the features of the application

Layout folder containing all of the files
that make up the layout of the app

Home folder containing all of the
files that make up the Home feature

http://mng.bz/J26a
http://mng.bz/J26a
http://mng.bz/J26a
https://github.com/chrissainty/blazor-in-action
https://github.com/chrissainty/blazor-in-action
https://github.com/chrissainty/blazor-in-action

352.4 Writing your first components
:root {
 --brand: #448922;
 --brand-hover: #5da030;
}

body {
 background-color: #f9f9f9;
}

a {
 color: var(--brand);
 text-decoration: underline;
}

a:hover {
 color: var(--brand-hover);
 text-decoration: none;
}

.navbar {
 border-bottom: 2px solid var(--brand);
 background: linear-gradient(90deg, rgba(255,255,255,1) 5%,
 ➥rgba(255,255,255,0) 100%), url("../images/navbar-bg.jpg") no-repeat
 ➥center;
 background-size: cover;
}

.btn-primary {
 background-color: var(--brand);
 border-color: var(--brand);
}

.btn-primary:hover {
 background-color: var(--brand-hover);
 border-color: var(--brand-hover);
}

.btn-outline-primary {
 border-color: var(--brand);
 color: var(--brand);
}

.btn-outline-primary:hover {
 background-color: var(--brand);
 border-color: var(--brand);
}

.grid {
 display: grid;
 grid-template-columns: repeat(3, 288px);
 column-gap: 123px;
 row-gap: 75px;
}

Listing 2.1 app.css

CSS variables are used to save you
from repeating the brand color
codes. This also makes updating the
color in the future much easier.

36 CHAPTER 2 Your first Blazor app
I won’t go into detail on what each style is doing, but I will point out one nice feature
available in CSS called CSS variables. These allow us to define variables that can be
used throughout an application’s style sheet. Using variables means we have to specify
things like brand colors only once. They also make future branding changes much
easier to complete.

 The final thing we’ll do regarding styling is to make some adjustments to the
index.html page. First, we’ll add a reference to Bootstrap Icons (https://icons
.getbootstrap.com/). This free icon set is from the creators of Bootstrap and look
great. In order to use them, we’ll add the following line to the head element of the
index.html page in wwwroot:

<link href="https:/./cdn.jsdelivr.net/npm/bootstrap-icons@1.4.1/font/
bootstrap-icons.css" rel="stylesheet">

This line can be pasted directly under the existing link to the bootstrap.min.css file.
This link will pull in the Bootstrap Icons CSS file from their content delivery network
(CDN). If you’d prefer to use a local file instead of a CDN, you can find out how to
download one from the link I provided to the Bootstrap Icons site.

 Second, we’re going to update the title of the tag from BlazingTrails.Client
to Blazing Trails. The updated tag should look like this:

<title>Blazing Trails</title>

The third and last change we’re going to make is to remove the following stylesheet
reference:

<link href="BlazingTrails.Client.styles.css" rel="stylesheet" />

This is used for scoped CSS, a topic we’ll cover in chapter 3. When we do, we’ll add this
back in. But for now, we’re going to remove it, as it will cause an error in the browser
console. Now that our basic styling is in place, let’s move on and set up our layout.

2.4.3 Defining the layout

Blazor borrows the concept of a layout from other parts of ASP.NET Core. Essentially
it allows us to define common UIs, which is required by multiple pages. Things such as
the header, footer, and navigation menu are all examples of things you might put in
your layout. We also add a reference to a parameter called Body where we want page
content to be rendered. This comes from a special base class that all layouts in Blazor
must inherit from called LayoutComponentBase. Figure 2.14 shows an example of
what might be defined in a layout along with where the rendered page content would
be displayed.

 You don’t have to stick with a single layout for your whole application; you can
have multiple layouts for different parts of your app. So, if you wanted a particular
layout for the public-facing pages but a different one for the admin pages, you can do

https://icons.getbootstrap.com/
https://icons.getbootstrap.com/
https://icons.getbootstrap.com/

372.4 Writing your first components
that. In Blazor, the default layout is defined within the Router component (figure
2.15), which can be found in App.razor. This will automatically be applied to all
pages in the application.

Figure 2.15 Shows where the default layout is defined on the Router component. This layout will
automatically be applied to all pages in the application.

If you want to use a different layout on certain pages, you can specify an alternative by
applying the @layout directive. This goes at the top of the page, and you pass the
name of the component you wish to use. For example, if we had an alternative layout
called AdminLayout, our layout directive would look like this: @layout AdminLayout.

 Now that we understand what a layout is and why they’re useful, let’s get on with
defining the initial layout for Blazing Trails. We’re going to update the MainLayout
component. To begin, we will do two things. First, we’ll use the @inherits directive
to inherit from the LayoutComponentBase class. This marks this component as a lay-
out component and will give us access to the Body parameter. Second, we’ll define
where our page content is rendered using the Body parameter. Listing 2.2 shows what
the MainLayout should look like.

Figure 2.14 An example layout defining
shared UI. Any page that uses this layout
will have its content rendered in the
center panel marked Page Content.

Header

Page contentNavigation

Footer

The default layout is defined
by passing the type of the
component you wish to use.

38 CHAPTER 2 Your first Blazor app

@inherits LayoutComponentBase

<main class="container mt-5 mb-5">
 @Body
</main>

The only thing missing from our layout now is the header. We’ll define this as a sepa-
rate component, and as it’s part of the overall Layout feature, it will go in the Layout
feature folder next to the MainLayout component. As we did before, add a new
Razor component called Header.razor and then we’ll add the markup shown in list-
ing 2.3, which adds a Bootstrap navbar displaying the text Blazing Trails.

<nav class="navbar mb-5 shadow">

</nav>

That’s all we need in the Header component. We can now add that to the Main-
Layout by declaring it as we would any normal HTML element. The final code for
the MainLayout is shown in the next listing.

@inherits LayoutComponentBase

<Header />

<main class="container mt-5 mb-5">
 @Body
</main>

That’s it for the layout. If you try to run the application at this point, you will be able
to see the header we’ve just created but there will be a message saying “Sorry, there’s
nothing at this address.” That’s because we haven’t defined any routable components
(pages) yet. Let’s do that next and create the home page for Blazing Trails.

2.4.4 The Blazing Trails home page

In this section, we will create and load some test data (trails) for the application, and
we will create a card component to display each trail within the test data. By the end of
the chapter, we will have the application we saw at the start of this chapter. We already
created the HomePage component in section 2.4.1, but it still has the boilerplate code
that comes with a new component. We need to update this code to make the compo-
nent routable. Once we do that, we’ll define a class that represents a trail. We can then

Listing 2.2 MainLayout component for Blazing Trails

Listing 2.3 Header component defining a Bootstrap navbar

Listing 2.4 Completed MainLayout component

Defines the component
as a layout component

Marks the location where page
content is rendered in the layout

This is a reference to the Header component. Note
the capital H. Component references are case-
sensitive in Blazor and should start with a capital
letter to avoid collisions with regular HTML elements.

392.4 Writing your first components
define some test data to use to build out the rest of the UI. Finally, we’ll load the test
data into the HomePage and loop over it to display the various trails via a reusable
TrailCard component that we’ll create. Sound good? Let’s get cracking!

 As we talked about earlier, to make a component routable, we need to use the
@page directive and a route template that specifies the route it will be responsible for.
At the top of the HomePage.razor file, add the directive along with a route template:

@page "/"

When a route template contains only a forward slash (/), it tells the router that this is
the root page of the application. You can run the application at this point to check
that the HomePage’s content is being displayed. You should see the same header as
before with the text HomePage displayed (figure 2.16).

Figure 2.16 The current state of the Blazing Trails application displaying the Header
component and HomePage component with its default text

We need a way of representing a trail in our code. To do that, we will add a new class
called Trail to the Home feature folder. It will contain the various data points for a
trail, things like its name, length, and the time it takes to complete it. We’ll also
include a second class called RouteInstruction in the file. This class represents a
waypoint on the route to help guide other walkers. I like to include closely related
classes in the same file, as it makes working with them much easier. Listing 2.5 shows
the contents of the Trail.cs file.

public class Trail
{
 public int Id { get; set; }

Listing 2.5 Trail.cs

40 CHAPTER 2 Your first Blazor app
 public string Name { get; set; } = "";
 public string Description { get; set; } = "";
 public string Image { get; set; } = "";
 public string Location { get; set; } = "";
 public int TimeInMinutes { get; set; }
 public string TimeFormatted => $"{TimeInMinutes / 60}h {TimeInMinutes % 60}m";
 public int Length { get; set; }
 public IEnumerable<RouteInstruction> Route { get; set; } =

Array.Empty<RouteInstruction>();
}

public class RouteInstruction
{
 public int Stage { get; set; }
 public string Description { get; set; } = "";
}

Now that we have a definition for a trail, we’ll define some test data to use. Currently,
our app doesn’t have a backend—there is no API we can call to retrieve or save data.
To simulate making an http call to load data from an API, we’ll define our test data in
a JSON file. This is a great way to develop frontend applications that don’t currently
have a useable server element. We can use the HttpClient to load the data from the
JSON file in the same way we’d load data from an API. Then once the server element
is established, the http call just needs to be updated to point at the API endpoint
instead of the JSON file.

 In the wwwroot folder, create a directory called trails. Inside that folder, add a
new JSON file called trail-data.json with the code shown in the following listing.

[
 {
 "id": 1,
 "image": "trails/1.jpg",
 "name": "Countryside Ramble",
 "location": "Durbach, Germany",
 "timeInMinutes": 195,
 "length": 11,
 "description": "A really nice walk in some very scenic countryside.",
 "route": [
 {
 "stage": 1,
 "description": "Follow the path to the fork and go left."
 },
 {
 "stage": 2,
 "description": "Cross the bridge and turn right."
 },
 {
 "stage": 3,
 "description": "The trail finishes at the end of the valley."
 }

Listing 2.6 trail-data.json: Contains trail test data

This shows the location of the
trail image relative to the root
of the application at run time.

This is the time it takes to walk
the trail as total minutes.

This is an array of route
instructions for the trail.

412.4 Writing your first components
]
 },
 {
 "id": 2,
 "image": "trails/2.jpg",
 "name": "Woodland Walk",
 "location": "Nottingham, UK",
 "timeInMinutes": 80,
 "length": 4,
 "description": "Lots of tall trees and bubbling streams.
 ➥A very calming hike.",
 "route": [
 {
 "stage": 1,
 "description": "The walk is one big loop. Just keep following the
 ➥signs."
 }
]
 }]

I’ve only included two trails in this code snippet, but feel free to add as many trails as
you wish to the file. The companion code for this chapter on GitHub (https://
github.com/chrissainty/blazor-in-action/tree/main/chapter-02) will contain many
more trails, so feel free to copy that if you prefer.

 For the images, I’ve just downloaded some free ones from Pixabay (https://pixabay
.com) and added them to the wwwroot > Trails folder.

 With our test data in place, we’ll return to the HomePage component, where we
need to load it. We’re going to load the data using the HttpClient, but to use it we
need to get an instance of it using dependency injection. Blazor makes this easy by
providing an inject directive: @inject [TYPE] [NAME], where [Type] is the type
of the object we want and [Name] is the name we’ll use to work with that instance in
our component. Under the page directive, add @inject HttpClient Http, which
will give us an instance of the HttpClient to work with.

The inject directive: What’s going on under the hood?
The inject directive allows us to quickly and easily inject instances of objects, regis-
tered with the service container in Program.cs, into our components. But the direc-
tive is just some syntactic sugar saving us a chunk of typing.

Blazor uses property injection for its components. What the inject directive compiles
down to is a property decorated with an attribute called Inject. So, if we use our
Inject directive above as an example, it ends up compiled to this:

[Inject]
public HttpClient Http { get; set; }

In fact, you could write this code in the @code block at the bottom of the component
and not use the Inject directive at all if you prefer. It’s just a lot more typing!

https://github.com/chrissainty/blazor-in-action/tree/main/chapter-02
https://github.com/chrissainty/blazor-in-action/tree/main/chapter-02
https://pixabay.com
https://pixabay.com
https://pixabay.com

42 CHAPTER 2 Your first Blazor app
Before we can use the HttpClient, we need somewhere to store the results returned
by the call. Our JSON test data is an array of trails, and as we’re not going to modify
what’s returned, just listing it out, we can create a private field of type IEnumerable
<Trail>. This is done in the @code block of the component as shown in the follow-
ing listing.

@page "/"
@inject HttpClient Http

<h3>HomePage</h3>

@code {

 private IEnumerable<Trail> _trails;

}

Now that we have somewhere to store our test data, we can make the call to retrieve it.
A great place to do this kind of thing is the OnInitialized life cycle method. This
method is provided by ComponentBase—which all Blazor components inherit from—
and it’s one of three primary life cycle methods. The other two are OnParametersSet
and OnAfterRender—they all have async versions as well. OnInitialized is run only
once in the component’s lifetime, making it perfect for loading initial data like we need
to. We’ll be covering component life cycle methods in detail in chapter 3, so don’t worry
if you have questions right now.

To retrieve the data from the JSON file, we can make a GET request just like we
would if we were reaching out to an API. However, instead of passing the address of the
API in the call, we pass the relative location of the JSON file. As the file is in the wwwroot
folder, it will be available as a static asset at run time, just like the CSS file. This means
the path we need to pass in the GET request is "trails/trail-data.json".

 A great productivity enhancement that ships with Blazor is the addition of some
extension methods for the HttpClient:

 GetFromJsonAsync<T>

 PostAsJsonAsync

 PutAsJsonAsync

Under the hood, these methods are using the System.Text.Json library. The first
method will deserialize a successful response containing a JSON payload to a type (T)
we specify. The second and third will serialize an object to JSON to be sent to the
server. All three of these methods do this in a single line. No more having to manually
serialize and deserialize objects or check for success codes. This makes everything
much cleaner and removes a lot of boilerplate.

 When using these new methods, be aware that when a nonsuccess code is returned
from the server, they’ll throw an exception of type HttpRequestException. This
means that it’s generally a good practice to wrap these calls in a try catch statement

Listing 2.7 HomePage with injected HttpClient and trails field

The Page directive defines the route
this component is responsible for.

The Inject directive is used to get
instances of objects from the
dependency injection container.

The Private field
holds trail data.

432.4 Writing your first components
so nonsuccess codes can be handled gracefully. The final code for the HomePage com-
ponents @code block is shown in the following listing.

@code {
 private IEnumerable<Trail> _trails;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 _trails = await Http.GetFromJsonAsync
 ➥<IEnumerable<Trail>>("trails/trail-data.json");
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem
 ➥loading trail data: {ex.Message}");
 }
 }
}

You may have noticed that Visual Studio (or whichever IDE you’re using) is indicating
a problem with the _trails field and the call to load the trail data (figure 2.17) by
displaying a green wavy line under those sections.

Figure 2.17 Wavy lines under sections of code indicate that there is a problem with the code
that needs to be resolved.

We’re seeing these warnings because of a change in the default project settings from
.NET 6—nullable references types (NRTs) (http://mng.bz/v6Or) are enabled by
default. This feature is designed to help us make the flow of nulls explicit in our code.
Essentially, it makes us deal with nulls properly.

Listing 2.8 Final code block for the HomePage component

The private field holds
the results returned
from the http call.

The http call loads test data
from the trail-data.json file.

The Catch block handles
nonsuccess responses
from the http call.

Wavy lines indicate a
problem with code.

http://mng.bz/v6Or

44 CHAPTER 2 Your first Blazor app
 The warning we see for the _trails field is the compiler telling us that it’s a non-
nullable type and hasn’t been given a default value or initialized in a constructor. This
means we could try to use it and its value could be null. The GetFromJsonAsync
method can return a null value; the warning here is telling us that so we can act appro-
priately. The fix for these warnings is to make the _trails field nullable by using the
? operator:

private IEnumerable<Trail>? _trails;

We’ve now declared that we know this field may be null, and you will see the warnings
have disappeared. If you’re new to NRTs, this might take a little getting used to. But
dealing with nulls properly will help us write better and more stable applications.

 Great! We now have our data being loaded into our component, but we need to do
something with it. It would be nice to display a message to the user to let them know
when we’re loading the data—just in case it takes a while. Then once we have the data,
we need to display it using cards shown in figure 2.18.

 We can use a simple if statement in our markup to check the value of the
_trails field. If it’s null, then we can surmise that the data is still being loaded,

Figure 2.18 Cards are used to display each trail and its associated information.

452.4 Writing your first components
excluding an error scenario, of course. If the value is not null, then we have some
data, and we can go ahead and display it (see the following listing).

<PageTitle>Blazing Trails</PageTitle>

@if (_trails == null)
{
 <p>Loading trails...</p>
}
else
{
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <div class="card shadow" style="width: 18rem;">
 <img src="@trail.Image" class="card-img-top"
 ➥alt="@trail.Name">
 <div class="card-body">
 <h5 class="card-title">@trail.Name</h5>
 <h6 class="card-subtitle mb-3 text-muted">

 @trail.Location
 </h6>
 <div class="d-flex justify-content-between">

 @trail.TimeFormatted

 @trail.Length km

 </div>
 </div>
 </div>
 }
 </div>
}

We’ve used another cool feature of Blazor in the code here—the PageTitle compo-
nent. It’s used to change the title of the page in the browser tab—something that has
been difficult to achieve in Blazor before .NET 6. The title element of a web page is
held in the head element of the host page, outside the scope of the Blazor app. To
manipulate a page title in previous versions of Blazor, we needed to use some Java-
Script interop or maybe find a NuGet package someone in the community had built.

At this point, you should be able to build the app and run it. If all has gone to plan,
you should see the trails displayed on the home page. Now, we could finish here but
there’s one little refactor I think we should do first.

 You may have noticed there’s a fair amount of code for creating the trail card in
listing 2.9. While it’s all perfectly valid as is, wouldn’t it be nice to encapsulate it all in

Listing 2.9 HomePage.razor: Markup for the HomePage component

The PageTitle component is used to set the
page title displayed in the browser tab.

This checks to see if
data has been loaded.

Once data is loaded, loop over it
and create a card for each trail.

46 CHAPTER 2 Your first Blazor app
a component instead? This would make the code in the HomePage component much
easier to read.

 Create a new component called TrailCard.razor in the Home feature folder.
Then replace the boilerplate code with the markup for the card from the HomePage.

 That was pretty painless. But now we have a problem. How do we get access to the
current trail data? The answer is parameters.

 We can pass data into components via parameters. Think of these as the public
API for a component, and they work one way, from parent to child. We can define
them in the code block by creating a public property and decorating it with the
Parameter attribute. We pass data into them from the parent using attributes on the
component tag.

 For our TrailCard component, we’ll create a parameter that will allow us to pass
in the current trail from the parent. We can then update the Razor code to use this
parameter. See the following listing for the completed TrailCard component.

<div class="card shadow" style="width: 18rem;">

 <div class="card-body">
 <h5 class="card-title">@Trail.Name</h5>
 <h6 class="card-subtitle mb-3 text-muted">

 @Trail.Location
 </h6>
 <div class="d-flex justify-content-between">

 @Trail.TimeFormatted

 @Trail.Length km

 </div>
 </div>
</div>

@code {
 [Parameter, EditorRequired]
 public Trail Trail { get; set; } = default!;
}

In addition to using the Parameter attribute, we’ve also added another attribute
called EditorRequired. This was introduced in .NET 6, and we can use it to indicate
that a parameter is required. If we try to use the TrailCard component now, without
passing a trail to the Trail parameter, we’ll get a warning.

As we talked about earlier, due to nullable reference types being enabled, we need
to handle the potential nullability of the parameter. There are two approaches for
this: mark the parameter as nullable or give it a default value. Which option we use

Listing 2.10 TrailCard.razor

Defines a required
component parameter

472.4 Writing your first components

a
.

will depend on the situation, but in this case, we’re going to choose the latter in com-
bination with the null forgiving operator (!).

 The null forgiving operator allows us to tell the compiler that a value isn’t null or
won’t be null. It’s very useful for situations where the compiler can’t work this out for
itself, which does happen every so often. In the case of a required component param-
eter (that’s also a reference type), it’s reasonable to assume that the value of the
parameter won’t be null other than through us as developers doing something a bit
strange. Therefore, initializing it using the default keyword and the null forgiving
operator is a clean option. We won’t have to write any additional null checking code
in our markup or methods when using the parameter, and if at run time the param-
eter’s value was null, we would see a clear error that would allow us to debug the issue.

 All that’s left now is to update the HomePage component to use the new Trail-
Card component. The final code for the HomePage component is shown in the fol-
lowing listing.

@page "/"
@inject HttpClient Http

@if (_trails == null)
{
 <p>Loading trails...</p>
}
else
{
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" />
 }
 </div>
}

@code {
 private IEnumerable<Trail>? _trails;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 _trails = await Http.GetFromJsonAsync
 ➥<IEnumerable<Trail>>("trails/trail-data.json");
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }
}

Listing 2.11 The HomePage component updated to use the TrailCard

The Page directive marks the component as a routable component
with the route template stating which route it’s responsible for.

The Inject directive allows services
to be injected into the component
from the service container.

The If block checks if the _trails
field is null and displays a loading
message until it has a value.

The Foreach loop iterates over the
trails contained in the _trails field.

The Child component defines a TrailCard
component and passes in the current trail vi
the Trail parameter defined on the TrailCard

This Private field holds
the current trails.

HttpClient is used to
load test data from

a local JSON file.

The Catch block allows
handling of errors from
the http call gracefully.

48 CHAPTER 2 Your first Blazor app
Congratulations, we’ve just built the first small part of Blazing Trails!

Summary
We’ve covered a lot of topics in this chapter, so don’t worry if you’re feeling a little
overwhelmed. Throughout the rest of the book, we’ll dive deep into everything we’ve
touched on, and by the time we finish Blazing Trails, you’ll be a Blazor pro!

 Blazor comes with two templates—Blazor Server and Blazor WebAssembly—
that help you get started building applications faster.

 Blazor WebAssembly is the more complex template with two configurations,
standalone and hosted. Standalone generates a single Blazor WebAssembly
project, which is useful when you have an existing backend, or your application
doesn’t require a backend. Hosted provides a full stack application with an
ASP.NET Core backend, Blazor frontend, and a .NET class library for shared
code.

 Blazor applications can be created with either an IDE such as Visual Studio or
from the command line using the .NET CLI.

 Building your application will automatically restore any dependencies it
requires.

 Blazor applications use a host page that contains the HTML element where
the Blazor app will be rendered, as well as a link to the Blazor JavaScript
run time.

 Blazor WebAssembly applications don’t have a Startup class, only a Program
class, due to not having a middleware pipeline. Service configuration and regis-
tration are moved to Program.cs.

 For Blazor WebAssembly, Program.cs is used to create and run an instance of
WebAssemblyHost. This is done via the WebAssemblyHostBuilder. We use
the builder to configure the various aspects of our Blazor application, such as
its root components and service container.

 App.razor is the default root component and contains the Router compo-
nent. All other components will be rendered as children of App.

 Feature folders can offer a number of benefits when organizing the files in your
application. Everything that’s related to a feature is in one place, making
updates and maintenance easier.

 Layout components are a great way to define common UI, which would be
repeated on every page, such as headers and navigation menus.

 Values can be passed into components via parameters, which can be thought of
as the API for a component. Parameters must be public properties; they cannot
be private.

Working with Blazor’s
component model
The fundamental building blocks of Blazor applications are components. Almost
everything you do will directly or indirectly work with them. In order to build great
applications, you must know how to harness their power. You’ve already had a taste
of using them in chapter 2. In this chapter, we’re going to look at them in much
more detail.

 Components define a piece of UI, which can be something as small as a button
or as large as an entire page. Components can also contain other components.
They encapsulate any data that a piece of UI requires to function. They allow
a piece of UI to be reused across an application or even shared across multiple
applications—something we’ll look at in chapter 7.

This chapter covers
 Exploring options for structuring components

 Looking at life cycle methods

 Handling DOM events

 Passing values between components

 Styling components
49

50 CHAPTER 3 Working with Blazor’s component model
 Data can be passed into a component using parameters. Parameters define the
public API of a component. The syntax for passing data into a component using
parameters is the same as defining attributes on a standard HTML element—with a
key-value pair. The key is the parameter name, and the value is the data you wish to
pass to the component.

 The data a component contains is more commonly referred to as its state. Methods
on a component define its logic. These methods manipulate and control that state via
the handling of events.

 Components can be styled via traditional global styling or via scoped styles. Scoped
styles allow the component to define its own CSS classes without fear of colliding with
other styles in the application. It’s even possible to use CSS preprocessors such as Sass
(https://sass-lang.com/) with scoped styling.

 To help us put all of this into real-world context, we’ll be adding a cool new slide-
out drawer feature to Blazing Trails (figure 3.1).

Figure 3.1 We’ll be building a slide-out drawer for Blazing Trails, which will display more
detailed information about the selected trail.

https://sass-lang.com/

513.1 Structuring components
The drawer will slide out from the right-hand side of the page. To trigger the drawer,
we’ll add a button to the TrailCard component we built in chapter 2. The drawer
will display more detailed information about the selected trail. When the user clicks
the Close button on the drawer, it will cleanly slide back out of view.

 Hopefully that has piqued your interest! But first we need to do a bit of ground-
work. Let’s get started!

3.1 Structuring components
As you will find with almost every part of Blazor, there are multiple ways of doing
things. The Blazor team have been very deliberate with making the framework
unopinionated so developers can build applications the way that works best for them.
One example of this is in how components are structured.

 It is possible to define a component in a single .razor file that contains both its
markup and logic. But it is also possible to separate a component into a .razor file that
defines the markup and a C# class that defines the logic.

3.1.1 Single file

When using a single file approach, unsurprisingly, all markup and logic for a compo-
nent is defined in a single file. The primary advantage of this approach is that it allows
you to work with everything in one place. This can really help with productivity, as you
don’t need to keep swapping back and forth between multiple files.

 Single file is the default when creating new components. The following listing
shows a component that uses the single file format.

@page "/"
@inject HttpClient Http

@if (_trails == null)
{
 <p>Loading trails...</p>
}
else
{
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" />
 }
 </div>
}

@code {
 private IEnumerable<Trail>? _trails;

 protected override async Task OnInitializedAsync()
 {

Listing 3.1 A component defined using a single file approach

Directives are declared
at the top of the file.

Markup is declared after
the directive section.

The component logic
is declared inside of a
code block.

52 CHAPTER 3 Working with Blazor’s component model

 try
 {
 _trails = await Http.GetFromJsonAsync
 ➥<IEnumerable<Trail>>("trails/trail-data.json");
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem
 ➥loading trail data: {ex.Message}");
 }
 }

}

The code here should look familiar—this is the Blazing Trails HomePage component
we created in chapter 2. The entire component is defined in a single .razor file with
the markup coming first and the logic coming second, defined in the code block.

 This is my preferred approach for structuring components, as I really like having
everything in a single file—it allows me to work faster since I don’t have to switch files.
But there is another benefit that I find useful: monitoring component size.

 When building applications, it’s easy to create very large components that are
doing lots of things. However, just like when creating regular C# classes, you should
try to keep your components focused, with a single purpose. One way I use to gauge
this is the size of my component files. When I find I’m constantly scrolling up and
down a file adding markup and logic, it’s an indication that my component may be
doing too much and I should be thinking about splitting it out into additional compo-
nents with more focused responsibility. This isn’t a clear-cut method, however; there
are times when a component may be quite large but still has only one responsibility,
but it at least makes me think about it.

One argument that I often hear against this method is that markup and logic
should be separated because otherwise we’re mixing concerns. I disagree with this
view. The logic in a component should be logic that operates over the markup and
drives the function of the component. Business logic has no place in components. If
you take this view, then the logic and markup are intertwined—one can’t exist without
the other. Thus, separating them seems to fall into the same category as organizing an
application’s files by type rather than feature. And as I explained in chapter 2, this is
inefficient and hinders productivity.

3.1.2 Partial class

Another approach is to split the markup and logic of a component into two separate
files. The markup of the component is kept in the .razor file, and the logic is added to
a C# class. In earlier versions of Blazor, it was only possible to apply this approach
using inheritance, as there was no support for the partial keyword. This is no longer
the case.

 Let’s take a look at the HomePage component refactored to use this approach. List-
ing 3.2 shows the component’s markup.

The component logic
is declared inside of a
code block.

ck
533.1 Structuring components

@page "/"

@if (_trails == null)
{
 <p>Loading trails...</p>
}
else
{
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" />
 }
 </div>
}

Now here’s the logic for the component, shown next.

using Microsoft.AspNetCore.Components;
using System.Net.Http.Json;

namespace BlazingTrails.Client.Features.Home;

public partial class HomePage
{
 private IEnumerable<Trail>? _trails;

 [Inject] public HttpClient Http { get; set; } = default!

 protected override async Task OnInitializedAsync()
 {
 try
 {
 _trails = await Http.GetFromJsonAsync<IEnumerable<Trail>>
 ➥("trails/trail-data.json");
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }
}

As you can see, using this technique, you can make the two elements of the compo-
nent separate. You should also note the naming of the files, HomePage.razor and
HomePage.razor.cs. If you’re using Visual Studio to build your applications, following
this naming convention will produce a nested effect (figure 3.2).

Listing 3.2 HomePage.razor: The markup

Listing 3.3 HomePage.razor.cs: The logic

Directives section

Only markup is included
in the razor file.

The class
is marked
as partial.

Blazor uses property
injection for dependencies.

This is achieved in a class by
using the Inject attribute.

Methods that were
previously in the code blo
are declared in the class.

54 CHAPTER 3 Working with Blazor’s component model
This makes it easier to work with the component, as the files are always grouped
together in the UI. It also keeps the number of files being displayed in the IDE to a
minimum, as you can simply hide any partial classes you’re not currently interested in.

 The major benefit of separating the markup and logic of the component is the
development experience. Again, in the single file approach, the razor editor is not as
fully featured as when working with regular C# class files. By separating out the logic
to a C# class file, developers can access all the editor features they’re used to.

 The drawback of this approach is that you now have two files to manage when
you’re working with a component. This can end up with lots of switching back and
forth, as you will need to be in the logic file when adding methods or other members
to the component. Then you will need to be in the markup file to add any UI, hook
up event handlers, and so on.

 Which approach you choose for building your applications is largely a personal
choice based on which method you find most productive. As I said earlier, my prefer-
ence is single file; it’s the structure that makes me the most productive—it’s also the
structure that we will be using throughout this book.

3.2 Component life cycle methods
Just as in other component-based frameworks, components in Blazor have a life cycle:
they’re created, they exist for a period, and then they’re destroyed. Figure 3.3 rep-
resents all the major parts of a component’s life cycle.

Depending on what an application is doing, it may need to perform actions at cer-
tain points during this life cycle—for example, load initial data for the component to
display when it is first created, or update the UI when a parameter has a certain value
from the parent. Blazor supports this by giving us access to the component life cycle at
specific points, which are

1 OnInitialized/OnInitializedAsync
2 OnParametersSet/OnParametersSetAsync
3 OnAfterRender/OnAfterRenderAsync

Figure 3.2 Naming a partial class the same as
the markup portion of the component will produce
a nested effect when using Visual Studio.

Visual Studio
nesting effect

553.2 Component life cycle methods

Figure 3.3 The life cycle of a component

To perform a render of the component,
the renderer calls the component’s
BuildRenderTree method. This creates
a set of UI updates that are applied
to the DOM.

The UI updates produced
by the BuildRenderTree
method are applied to
the browser’s DOM, which
renders the component
to the UI.

Once the component
has been rendered,
OnAfterRender and
OnAfterRenderAsync
are called.

OnParametersSet

OnParametersSetAsync

OnAfterRender

OnAfterRenderAsync

SetParametersAsync

Parent Component Renders

StateHasChanged

ShouldRender

Component is
rendered

Rendering Process

BuildRenderTree

Run only once in a component’s lifetime

Renderer

Component

Events

SetParametersAsync sets the
component’s parameters and
cascading parameters from the
ParameterView object received
from the parent component.
If the component is being
executed for the first time,
Onlnitialized is called; otherwise,
OnParametersSet is called.

OnParametersSet and
OnParametersSetAsync run every
time the incoming parameters
of the component change.

OnParametersSet
runs and then calls
OnParametersSetAsync. A call is
then made to StateHasChanged.

If OnParametersSetAsync
returned a noncomplete task,
then the result of that task will
be awaited and then another
call to StateHasChanged will
be made.

Code handling built-in events will trigger
the rendering process, such as onclick
handlers. Custom events using the
EventCallback or EventCallback<T>
type will trigger it as well.

User-defined events with the type of
Action or Func<T> can also trigger
the rendering process via a manual
call to StateHasChanged.

Onlnitialized and
OnlnitializedAsync
will run only once
in the lifetime of a
component. This
can be thought of
in a similar way to
the constructor
of a C# class.

If the component isn’t initialized,
then it is set to initialized and
Onlnitialized is called. Once
that has run, then it calls
OnlnitializedAsync.

If a noncomplete task is returned,
then StateHasChanged is called to
render the synchronous part of the
OnlnitializedAsync code before
waiting for the task to complete.

The rendering process potentially runs many times in a
component’s lifetime. Every time a call is made to the
StateHasChanged method, this process will be executed.

StateHasChanged checks
for a pending render. If
one doesn’t exist, then it
checks whether the component
has ever been rendered,
or whether ShouldRender
returns true.
If the component hasn’t
been rendered before,
then the renderer is
notified that the
component should be
rendered.
If the component has
been rendered before
and ShouldRender returns true, then the renderer
is notified that the component should be rendered.

The rendering of the component is handled by an external entity
called a renderer.
It is notified when the component needs to be rendered. It is
added to the render queue to be processed at the next
available opportunity.

OnInitialized

OnInitializedAsync

56 CHAPTER 3 Working with Blazor’s component model
The life cycle methods are provided by the ComponentBase class, which all compo-
nents inherit from. Each method has a synchronous and asynchronous version. The
synchronous version is always called before the asynchronous version.

To help visualize the life cycle, we will create a component that will log messages to
the browser console when each method is run. The code is shown in listing 3.4.

NOTE If you run the following component in a Blazor Server app, the output
will be in the output window in Visual Studio.

<h1>Componet Lifecycle</h1>
<p>Check the browser console for details...</p>

@code {

 public override async Task SetParametersAsync
 ➥(ParameterView parameters)
 {
 Console.WriteLine("SetParametersAsync - Begin");
 await base.SetParametersAsync(parameters);
 Console.WriteLine("SetParametersAsync - End");
 }

 protected override void OnInitialized()
 => Console.WriteLine("OnInitialized");

 protected override async Task OnInitializedAsync()
 => Console.WriteLine("OnInitializedAsync");

 protected override void OnParametersSet()
 => Console.WriteLine("OnParametersSet");

 protected override async Task OnParametersSetAsync()
 => Console.WriteLine("OnParametersSetAsync");

 protected override void OnAfterRender
 ➥(bool firstRender)
 => Console.WriteLine(
 ➥$"OnAfterRender (First render: {firstRender})");

 protected override async Task OnAfterRenderAsync
 ➥(bool firstRender)
 => Console.WriteLine(
 ➥$"OnAfterRenderAsync (First render: {firstRender})");
}

Figure 3.4 shows the life cycle output printed to the browser console when the compo-
nent is run for the first time. Let’s walk through that process first.

Listing 3.4 Lifecycle.razor logs the component life cycle methods

Each life cycle method
is overridden and will
print its name to the
browser console
when it runs.

573.2 Component life cycle methods
Figure 3.4 Shows the order each life cycle method is called in

3.2.1 The first render

During the first render, all the component’s life cycle methods will be called. During
subsequent renders, only a subset of the methods will run.

 The process starts with SetParametersAsync being called. This is the only life
cycle method that requires us to call the base method; if we don’t, then the compo-
nent will fail to load. This is because the base method does two essential things:

 Sets the values for any parameters the component defines—This happens both the first
time the component is rendered and whenever parameters could have changed.

 Calls the correct life cycle methods—This depends on whether the component is
running for the first time or not.

If we removed the call to the base method, the output in the browser console would
look like this:

SetParametersAsync – Begin
SetParametersAsync – End

NOTE SetParametersAsync is not a life cycle method that is often used by
developers. Commonly, it is just OnInitialized, OnParametersSet, and
OnAfterRender. In advanced scenarios, you may choose to override Set-
ParametersAsync and not call the base method of SetParametersAsync.
Doing so would allow complete control over the component’s initialization
and subsequent updates. This can be a useful tool when creating highly per-
formant components; however, that is out of scope for this book.

During a first render, the component hasn’t been initialized. This means that On-
Initialized and OnInitializedAsync will be called first—it is also the only time
they will run. This pair of methods is the only one that runs once in a component’s
lifetime. You can think of these as constructors for your component. It makes them a
great place to make API calls—for example, to get the initial data the component will
display.

 Once the OnInitialized methods have run, OnParametersSet and On-
ParametersSetAsync are called. These methods allow developers to perform

SetParametersAsync kicks things off and
is responsible for calling Onlnitialized
and OnlnitializedAsync, then OnParametersSet
and OnParametersSetAsync.

OnAfterRender and OnAfterRenderAsync are
called last, after StateHasChanged has been
called to trigger the rendering process.

58 CHAPTER 3 Working with Blazor’s component model
actions whenever a component’s parameters change. In the case of a first render, the
component’s parameters have been set to their initial values.

 The final methods to run are OnAfterRender and OnAfterRenderAsync. These
methods both take a Boolean value indicating if this is the first time the component
has been rendered. On the initial render, the value of firstRender will be set to
true; for every render after, it will be false:

void OnAfterRender(bool firstRender)
Task OnAfterRenderAsync(bool firstRender)

This is useful because it allows one-time operations to be performed when a compo-
nent is first rendered, but not on subsequent renders. The primary use of the
OnAfterRender methods is to perform JavaScript interop (chapter 8) and other
DOM-related operations, such as setting the focus on an element.

3.2.2 The life cycle with async

One key point about the render we just covered is that it ran synchronously. In the
Lifecycle component, there are no awaited calls in any of the async life cycle meth-
ods, meaning each method ran in sequence. However, when async calls are added, then
things look a bit different. To demonstrate this, let’s update the OnInitializedAsync
method in the Lifecycle.razor component to make an async call.

protected override async Task OnInitializedAsync()
{
 Console.WriteLine("OnInitializedAsync - Begin");
 await Task.Delay(300);
 Console.WriteLine("OnInitializedAsync - End");
}

If we run the app again and check the browser console, we’ll see the output shown in
figure 3.5.

Figure 3.5 While awaiting the result of the asynchronous operation, the component is rendered.

When awaiting an async call, StateHasChanged
is invoked, triggering the render process. This
allows the UI to be updated with the results
of any synchronous code that has run up
to this point.

593.2 Component life cycle methods
Well, that’s a bit different! While Blazor was awaiting the async call, the component
was rendered. It was then rendered a second time after the OnParametersSet meth-
ods, as before. This is because Blazor checks to see if an awaitable task is returned
from OnInitializedAsync. If there is, it calls StateHasChanged to render the
component with the results of any of the synchronous code that has been run so far,
while awaiting the completion of the task. This behavior is also true for async calls
made in OnParametersSetAsync.

 When dealing with multiple asynchronous calls, rendering may not behave quite
as you’d expect. To demonstrate this, let’s look at another example shown in the fol-
lowing listing.

@foreach (var word in _greeting)
{
 <p>@word</p>
}

@code {

 List<string> _greeting = new List<string>();

 protected override async Task OnInitializedAsync()
 {
 _greeting.Add("Welcome");

 await Task.Delay(1000);
 _greeting.Add("to");

 await Task.Delay(1000);
 _greeting.Add("Blazor in Action");
 }
}

This component is simulating making multiple asynchronous calls in its On-
InitializedAsync life cycle method. As each call returns, new words are added to
the greeting list, which is then printed out via a foreach statement.

 What would you expect to be dis-
played? Perhaps Welcome, then after 1
second, the next word to would be
added, then after another second the
final words Blazor in Action would
appear? That would be a fair answer, but
you’d be wrong. What happens is this:
the word Welcome is displayed, then
after 2 seconds the words to Blazor

in Action are added (figure 3.6).

Listing 3.5 A component that makes multiple asynchronous calls

The first word is added
to the greeting list.

An async
call is made. The second word is added

to the greeting list.
Another async
call is made.

The final words are added
to the greeting list.

Welcome

Welcome

to

Blazor in Action
2-second delay

Figure 3.6 Initially the word Welcome is
displayed on the page, and 2 seconds later the
words to Blazor in Action are displayed.

60 CHAPTER 3 Working with Blazor’s component model
Why does this happen? The code up to the first awaited method is executed, and, as
we just learned, a call is made to StateHasChanged at this point to render the results
of any synchronous code while awaiting that task. This explains the render of the word
Welcome but not why the word to isn’t rendered after the first awaited call.

 The reason for this is that Blazor doesn’t understand our code. There is no way for
it to know that it should render after we add to to the greeting list. Instead, the code
continues to execute until the end of the method, and at this point, Blazor can per-
form a new render of the component.

 If we want the UI to update after each word is added to the list, then we must man-
ually call StateHasChanged to inform Blazor that the UI should be updated:

await Task.Delay(1000);
_greeting.Add("to");
StateHasChanged();

With this update to the code, if we reload the page, we should see the words appear in
the sequence shown in figure 3.7.

Figure 3.7 By telling Blazor when to update the UI, the words are rendered
as they are added to the list.

By telling Blazor when the UI needs to be updated, we’ve achieved the desired result
of the words being rendered as they’re added to the list.

3.2.3 Dispose: The extra life cycle method

There is another life cycle method that we can use, but this one is optional and it’s not
built in to the ComponentBase class: Dispose. This method is used for the same pur-
poses in Blazor as in other C# applications: to clean up resources. This method is
essential when creating components that subscribe to events, as failing to unsubscribe
from events before a component is destroyed will cause a memory leak.

 In order to access this method, a component must implement the IDisposable
interface. To do this, we can use the @implements directive, shown in the following
listing.

@implements IDisposable

<h1>Component Lifecycle</h1>
<p>Check the browser console for details...</p>

Listing 3.6 Lifecycle.razor implementing IDisposable

Welcome

 to

Welcome

 to

Blazor in Action

Welcome
1-second delay 1-second delay

The implements directive allows
components to implement the
specified interface.

613.2 Component life cycle methods
@code {

 // Other methods ommitted for brevity

 public void Dispose()
 => Console.WriteLine($"Dispose");
 }

To see the effect of this new life cycle method, we need to navigate away from the com-
ponent. This will remove it from the DOM and invoke the Dispose method. When
we do this, we see the output shown in figure 3.8 in the console.

Figure 3.8 After implementing IDisposable, Blazor will automatically call our
component’s Dispose method when the component is destroyed.

Blazor understands the IDisposable interface. When it detects its presence on a
component, it will call the Dispose method at the correct point when destroying the
component instance.

 Since .NET 5, Blazor also supports the IAsyncDisposable interface. This allows
disposal of resources asynchronously, which is useful when using JavaScript interop.
We’ll talk more about this in chapter 8. But for now, note that IDisposable and
IAsyncDisposable can’t both be implemented on the same component. If both are
implemented, then only the async version will run (see the following listing).

@implements IDisposable
@implements IAsyncDisposable

<h1>Componet Lifecycle</h1>
<p>Check the browser console for details...</p>

@code {

 // Other methods ommitted for brevity

 public void Dispose()
 => Console.WriteLine($"Dispose");

Listing 3.7 Lifecycle.razor: IDisposable and IAsyncDisposable

The implements directive allows
components to implement the
specified interface.

The call to the Dispose method
is logged to the console.

Both IDisposable and
IAsyncDisposable have
been implemented.

62 CHAPTER 3 Working with Blazor’s component model
 public async ValueTask DisposeAsync()
 => Console.WriteLine($"DisposeAsync");
}

Reloading the component and navigating away as before, to trigger the Dispose
methods, produces the output shown in figure 3.9 in the browser console.

Figure 3.9 When both IDisposable and IAsyncDisposable
are implemented, Blazor will only call the async Dispose methods.

As you can see, only the async Dispose methods have been called and the synchro-
nous methods have been ignored.

3.3 Working with parent and child components
A great analogy for components is LEGO blocks. Each LEGO block is a self-contained
unit, but the real fun comes when you plug the blocks together to build something
bigger and better. This is the same for components. They can be useful on their own,
but they are more powerful when used together.

 When using multiple components, you will soon end up with components that
contain other components. These are known as parent and child components. These
components will sometimes need to communicate with each other, such as for pas-
sing data and firing and handling events. In Blazor, we achieve this using component
parameters.

 Component parameters are declared on a child component, which forms that
component’s API. A parent component can then pass data to the child using that API.
But component parameters can also be used to define events on the child that the
parent can handle. This allows data to be passed from the child back up to the parent.
To help bring this to life, we’re going to add a new feature to Blazing Trails, shown in
figure 3.10.

 We’ll add a View button to the TrailCard that, when clicked, will slide open a
drawer on the right side of the application. This drawer will display more detailed
information about the selected trail. For this to work, we need to have three different
components communicate and pass data. Figure 3.11 illustrates their relationship.

Both IDisposable and IAsyncDisposable
have been implemented.

Only the async
Dispose method is run.

633.3 Working with parent and child components

Figure 3.10 Clicking the View button on a trail will slide open a new drawer component,
which displays more information about the selected trail.

The HomePage component will coordinate the operation. It will handle any On-
Selected events from the TrailCard component. When an OnSelected event is
raised, the HomePage component will record the selected trail and pass it into the

TrailCard component TrailDetails component

HomePage component

Selected trail

Raises an event
when a trail is
selected

Slides into view
whenever a new
trail is selected

Handles the Trail Selected event by passing the
trail into the TrailDetails component

Figure 3.11 The HomePage
component handles any trail-selected
events from the TrailCard
component. It records the selected trail
and passes it to the TrailDetails
component. When this happens, the
TrailDetails card will slide into
view, displaying the selected trail.

64 CHAPTER 3 Working with Blazor’s component model
TrailDetails component. Inside the TrailDetails component, whenever the
trail value changes, it will trigger the drawer to activate and slide into view.

3.3.1 Passing values from a parent to a child

To build our new drawer, we need to create a component that takes in a trail and then
displays its information. We will use a component parameter to create its API.

THE TRAILDETAILS COMPONENT

The TrailDetails component, shown in listing 3.8, will display the selected trail,
which is passed in via a component parameter. We’re going to create this component
in the Home feature folder.

<div class="drawer-wrapper @(_isOpen ? "slide" : "")">
 <div class="drawer-mask"></div>
 <div class="drawer">
 @if (_activeTrail is not null)
 {
 <div class="drawer-content">

 <div class="trail-details">
 <h3>@_activeTrail.Name</h3>
 <h6 class="mb-3 text-muted">

 @_activeTrail.Location
 </h6>
 <div class="mt-4">

 @_activeTrail.TimeFormatted

 @_activeTrail.Length km

 </div>
 <p class="mt-4">@_activeTrail.Description</p>
 </div>
 </div>
 <div class="drawer-controls">
 <button class="btn btn-secondary"
 @onclick="Close">Close</button>
 </div>
 }
 </div>
</div>

@code {
 private bool _isOpen;
 private Trail? _activeTrail;

Listing 3.8 TrailDetails.razor: Displays trail data

653.3 Working with parent and child components
 [Parameter, EditorRequired]
 public Trail? Trail { get; set; }

 protected override void OnParametersSet()
 {
 if (Trail != null)
 {
 _activeTrail = Trail;
 _isOpen = true;
 }
 }

 private void Close()
 {
 _activeTrail = null;
 _isOpen = false;
 }
}

A component parameter is defined as a public property that is decorated with the
Parameter attribute. We can even mark certain parameters as required using the
EditorRequired attribute with the Parameter attribute, as we have in the Trail-
Details component. Blazor uses this attribute to find component parameters during
the execution of the SetParametersAsync life cycle method we looked at earlier in
the chapter. During this life cycle method, the parameter values are set via reflection.

 We’re using the OnParametersSet life cycle method to trigger the drawer sliding
into view. As we learned earlier, this life cycle method is run every time the compo-
nent’s parameters change. This makes it perfect for our scenario, as we can use it to
trigger opening the drawer.

 Opening and closing the drawer is done using CSS. When a new trail is passed in,
the _isOpen field is set to true. This triggers the logic at the top of the component to
render the slide CSS class.

<div class="drawer-wrapper @(_isOpen ? "slide" : "")">

In the app.css file (found in the wwwroot > css folder), we need to add the styles
shown in the following listing to the bottom of the file.

.drawer-mask {
 visibility: hidden;
 position: fixed;
 overflow: hidden;
 top: 0;
 right: 0;
 left: 0;
 bottom: 0;
 z-index: 99;
 background-color: #000000;
 opacity: 0;

Listing 3.9 App.css: Styles for the TrailDetails component

A component parameter is defined as
a public property, which is decorated
with the Parameter attribute.

66 CHAPTER 3 Working with Blazor’s component model
 transition: opacity 0.3s ease, visibility 0.3s ease;
}

.drawer-wrapper.slide > .drawer-mask {
 opacity: .5;
 visibility: visible;
}

.drawer {
 display: flex;
 flex-direction: column;
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 width: 35em;
 overflow-y: auto;
 overflow-x: hidden;
 background-color: white;
 border-left: 0.063em solid gray;
 z-index: 100;
 transform: translateX(110%);
 transition: transform 0.3s ease, width 0.3s ease;
}

.drawer-wrapper.slide > .drawer {
 transform: translateX(0);
}

.drawer-content {
 display: flex;
 flex: 1;
 flex-direction: column;
}

.trail-details {
 padding: 20px;
}

.drawer-controls {
 padding: 20px;
 background-color: #ffffff;
}

The two key parts of the styles here are the transform: translateX properties on
the .drawer and .drawer-wrapper.slide > .drawer classes. Without these prop-
erties, the drawer would sit in its open position, in full view. Figure 3.12 shows the
effect of the properties on the drawer.

 The transform property on the .drawer class repositions the drawer off the right-
hand side of the screen by 110% of its width. The transform property on the
.drawer-wrapper.slide > .drawer class repositions it back to its default, bring-
ing it into view.

The translateX function positions
the drawer off the right-hand side
of the screen by 110% of its
width, making it appear closed.

When the .slide class is applied in the
TrailDetails component, translateX is used
again to position the drawer into view.

673.3 Working with parent and child components
UPDATING THE HOMEPAGE COMPONENT

To pass the trail into the TrailDetails component, we use attributes when defining
the component in the parent. The parent for us is the HomePage component. The fol-
lowing listing shows the HomePage component updated with the TrailDetails
component.

@page "/"
@inject HttpClient Http

@if (_trails == null)
{
 <p>Loading trails...</p>
}
else
{
 <TrailDetails Trail="_selectedTrail" />
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" />
 }
 </div>
}

@code {
 private IEnumerable<Trail>? _trails;
 private Trail? _selectedTrail;

Listing 3.10 HomePage.razor: Defining a child component

View port Drawer

The translateX(110%) function
moves the drawer off the
right-hand side of the screen.

View port Drawer

The translateX(0) function
moves the drawer back to its
default position, making it visible.

Figure 3.12 By default, the drawer is positioned off the right-hand side of the screen using
the translateX CSS function. When the .slide class is applied, translateX is used again
to reposition the drawer back to its standard placement, making it visible.

Data is passed to component
parameters using attributes
on the element.

68 CHAPTER 3 Working with Blazor’s component model
 protected override async Task OnInitializedAsync()
 {
 try
 {
 _trails = await Http.GetFromJsonAsync<IEnumerable<Trail>>
 ➥("trails/trail-data.json");
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }
}

In the HomePage component, we have defined a field called _selectedTrail, which
will store the selected trail. We then pass this into the TrailDetails component
using an attribute-style syntax:

<TrailDetails Trail="_selectedTrail" />

The attribute name matches the component parameter we defined on the Trail-
Details component. It is important that the case also matches; otherwise, Blazor will
consider it a regular HTML attribute and ignore it. If you’re using an IDE, such as
Visual Studio for Windows or macOS, or JetBrains Rider, you will receive IntelliSense to
help you do this. VS Code also has IntelliSense support for Blazor via the C# extension.

3.3.2 Passing data from a child to a parent

We have successfully used a component parameter to define the API of the Trail-
Details component, but we can’t see the fruits of our labor yet. In order to see some-
thing happen onscreen, we need to select a trail to display. This can be done by
passing that information up from the TrailCard component to the HomePage com-
ponent. To do this, we will use component parameters to define an event on the
TrailCard. This event will pass the selected trail; the HomePage component can then
handle this event and pass the trail to the TrailDetails component to display.

NOTE Events in Blazor are not true events in the .NET sense; they are just
delegates. This goes for Blazor’s built-in DOM events system and events
defined by developers using component parameters. This also means there
can only ever be one handler for any given event at any given time.

The following listing shows the updated code for the TrailCard component.

<div class="card shadow" style="width: 18rem;">

 <div class="card-body">

Listing 3.11 TrailCard.razor: Defining a component event

693.3 Working with parent and child components
 // other markup omitted for brevity
 <button class="btn btn-primary" title="View"
 ➥@onclick="@(() => OnSelected?.Invoke(Trail))">
 <i class="bi bi-binoculars"></i>
 </button>
 </div>
</div>

@code {
 [Parameter, EditorRequired]
 public Trail Trail { get; set; } = default!;
 [Parameter, EditorRequired]
 public Action<Trail> OnSelected { get; set; }
}

We define the event as a delegate of type Action<Trail>. This allows us to pass the
trail that this TrailCard is displaying back to the parent component. This happens
when the View button is clicked. We handle the button’s click event using Blazor’s
@onclick event.

Handling DOM Events
Blazor has its own events system that wraps the standard DOM events, allowing us
to work with them natively, in C#. To handle an event, we use the following syntax on
an element:

@onEVENTNAME="HANDLER"

EVENTNAME is the name of the event you wish to handle, and HANDLER is the name
of the method that will be invoked to handle the event. Blazor will also pass an event
argument to the Handler method, which is appropriate for the event. For example,
if we wanted to handle the keydown event on an input, we could do so like this:

<input @onkeydown="HandleKeydown" />

Then in the code block, we can define the Handler like this:

private void HandleKeydown(KeyboardEventArgs args)
{
 Console.WriteLine(args.Key);
}

Blazor will pass in the KeyboardEventArgs when it invokes the Handler method,
and we can then access metadata about the event. In the preceding example, we are
printing out the key that was pressed to the console.

For a full list of event arguments and the events they are for, check out the official
docs at http://mng.bz/M5Wo.

The delegate is
invoked, passing in
the current trail.

Events are defined
using delegate types of
either Action or Func.

http://mng.bz/M5Wo

70 CHAPTER 3 Working with Blazor’s component model

.

With the TrailCard updated, all that’s left to do is handle the event in the HomePage
component. First, we need to add a method to the code block, which will be called
whenever an event is raised:

private void HandleTrailSelected(Trail trail)
{
 _selectedTrail = trail;
 StateHasChanged();
}

This method accepts the selected trail and assigns it to the _selectedTrail field.
However, in order to see anything happen, we must call StateHasChanged. This lets
Blazor know that we need the UI to update. We must do this manually because Blazor
can’t know the intent of our code. It has no idea that our custom event should trigger
a re-render of the UI.

There are some cases where this manual control over re-renders is preferred; how-
ever, in most cases this is just an extra line of code that must be added to achieve the
desired effect. There is another way. We can use a different type to define our event
on the TrailCard called EventCallback. By using this type for our event, Blazor
will automatically call StateHasChanged on the component that handles the event,
removing the need to manually call it.

 To take advantage of this, we can update the component parameter on Trail-
Card and update how the event is invoked, as shown in the following listing.

<div class="card" style="width: 18rem;">

 <div class="card-body">
 // other markup omitted for brevity
 <button class="btn btn-primary" @onclick="
 ➥@(async () => await OnSelected.InvokeAsync(Trail))">
 ➥View</button>
 </div>
</div>

@code {
 [Parameter, EditorRequired]
 public Trail Trail { get; set; } = default!;
 [Parameter]
 public EventCallback<Trail> OnSelected { get; set; }
}

Then we can simply remove the StateHasChanged call from our handler in the
HomePage component. In fact, as it’s now just a single line, we can remove the braces
and use C#’s expression body syntax to make things really neat:

private void HandleTrailSelected(Trail trail)
 => _selectedTrail = trail;

Listing 3.12 TrailCard.razor: Updates to use EventCallback

When using EventCallback, a null check is not
required. It also supports async handlers; therefore,
we must invoke the event asynchronously.

The component
parameter is
now typed as
EventCallback<Trail>

713.4 Styling components
The final update is to assign the HandleTrailSelected method to the OnSelected
event in the HomePage component. We do this the same way we did to pass the
selected trail into the TrailDetails component—using attributes:

<TrailCard Trail="trail" OnSelected="HandleTrailSelected" />

At this point, we can run the application and test things out. Figure 3.13 shows the
running app.

Figure 3.13 Clicking the View button of any TrailCard displays the details of
that trail in the TrailDetails component.

If all has gone to plan, then clicking the View button should trigger the drawer and
display the trail. Clicking the Close button at the bottom of the drawer will close it and
allow a new trail to be selected.

3.4 Styling components
The styling is an important element to building any application, and it is a powerful
tool in delivering great UX. Look at the drawer we just built—the ability for it to slide

72 CHAPTER 3 Working with Blazor’s component model
in and out of the viewport was achieved using CSS, not C#. There are two approaches
to styling components in Blazor:

 Global styling
 Scoped styling

As you would expect, global styles are classes that are declared on the global scope
and can apply to any element that uses that class name or meets the selector for that
class. Scoped styles are the opposite. A stylesheet is created for a specific component,
and any classes defined in it are made unique to that component using a unique iden-
tifier produced during the build process.

 No matter which of these approaches you take to style your application, it is possi-
ble to combine it with CSS preprocessors. CSS preprocessors like Sass allow CSS to be
written in a more modular and maintainable way, taking advantage of features such as
variables and functions.

3.4.1 Global styling

Global styling is the default method when building applications. This is how we have
been styling Blazing Trails up to this point. To apply global styling, one or more
stylesheets are added to the host page, which, by default, is index.html in Blazor Web-
Assembly and _Host.cshtml in Blazor Server. The styles defined in those stylesheets
are then available throughout the application.

 Global styles are fantastic for creating a consistent look and feel across an
application—for example, if all buttons needed to be blue with certain font size and
rounded corners. This can be defined once in a global style and would apply to all
buttons in the app:

button {
 font-size: 1rem;
 background-color: blue;
 border-radius: .25rem
}

This makes global styles an incredibly powerful tool, because if we wanted to change
how the buttons (or any aspect of the applications design) looked, we can change the
styles in one place, and the application is immediately updated.

 This global scope of styles can also cause some issues when developing larger appli-
cations. For example, if we wanted a certain button to be green with square corners
rather than the global blue style, we would need to add another style to the stylesheet.
We would then need to apply the style to the particular button. That doesn’t seem too
bad, but think of this happening many times over—you end up with a stylesheet that is
full of one-off styles or niche styles. You could say this is down to bad design or lack of
maintenance—which would be fair—but it still doesn’t stop it from happening.

733.4 Styling components
 Making changes to global styles can also be cumbersome. Constantly scrolling up
and down a stylesheet with hundreds of lines of style classes can become tedious, espe-
cially when changes need to be made in multiple places.

 There are mitigations for this, of course. Using a CSS preprocessor like Sass (syn-
tactically awesome style sheets) allows the global styles to be broken up and kept next
to the component they are for in the project structure. This makes working with them
much easier and more efficient. There is also another option that has come about
with the rise of SPA frameworks—scoped CSS.

3.4.2 Scoped styling

Scoped styling allows a developer to create styles that affect only a certain component
in the application. In Blazor applications, this is done by creating a stylesheet with the
same name as the component. During the build process, Blazor generates unique
IDs for each component and then the styles for that component are rescoped using
each ID.

 To get a feel for this, let’s rework the styles for the TrailDetails component we
just built to use scoped CSS. To do this, we first need to create a new stylesheet called
TrailDetails.razor.css, then take all the styles we added to app.css for the
TrailDetails component and move them to this file.

 It is important that we name the file this way; otherwise Blazor won’t pick it up and
associate its styles with the TrailDetails component. If you’re using Visual Studio, a
nice effect of this naming convention is the file nesting in Solution Explorer, shown in
figure 3.14.

Figure 3.14 Giving files the same name with a different
extension causes a nesting effect in Visual Studio.

Visual Studio
nesting effect

74 CHAPTER 3 Working with Blazor’s component model
When using scoped CSS, there will be a lot of stylesheets dotted around the applica-
tion. Adding each and every one of them to the host page would be tedious and diffi-
cult to maintain. So, what Blazor does as part of the build process is bundle all the
styles from the various stylesheets into a single stylesheet. This means we just need to
reference that one stylesheet in our host page. The file has a naming convention of
[ProjectName].styles.css. As our project is called BlazingTrails.Client,
the file will be called BlazingTrails.Client.styles.css. Listing 3.13 demon-
strates where to reference the file.

NOTE If you’ve created a new project using .NET 5 or later, this reference
will be included automatically for you. You only need to manually add this
when upgrading from pre-.NET 5 projects.

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0,
 ➥maximum-scale=1.0, user-scalable=no" />
 <title>BlazingTrails.Client</title>
 <base href="/" />
 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />
 <link href="css/app.css" rel="stylesheet" />
 <link href="BlazingTrails.Client.styles.css"
 ➥rel="stylesheet" />
</head>

If we run the project and select a trail to open the drawer, we can use the browser’s
dev tools to look at the HTML and styles produced. Figure 3.15 shows what this
looks like.

Figure 3.15 Inspecting the HTML of the application in a browser shows a unique ID applied
to each HTML element belonging to the TrailDetails component.

Listing 3.13 Referencing scoped styles in index.html

Scoped styles are referenced via a single
stylesheet that is named after the host
project appended with styles.css.

During the build, Blazor has created
a unique ID for this component and
applied it as an attribute to all of
the HTML elements within it.

753.4 Styling components
As shown in figure 3.15, each HTML element belonging to the TrailDetails com-
ponent now has a unique attribute applied to it. This attribute follows the format of
b-[uniqueID]. If we then select an element to inspect its styles, figure 3.16 shows
how this ID is used to scope those styles.

Figure 3.16 Blazor rewrites the styles in the component’s stylesheet using the unique ID it
generates for the component.

Each selector for the styles in the TrailDetails.razor.css file has been rewritten to
use the unique ID Blazor generated for the component. Doing this is what scopes the
style to that component and stops the style affecting another element in another
component.

GLOBAL STYLES CAN STILL HAVE AN EFFECT

If you use scoped styles and nothing else in your application, then what I’m about to
say isn’t an issue. However, if you have some global styles and some scoped styles, then
you may still run into problems.

 To give an example, let’s say we had the following CSS class called .drawer in our
global CSS file, in addition to the one we have in the TrailDetails component’s
scoped stylesheet:

.drawer {
 border: 5px solid lawngreen;
}

This class would still affect the .drawer class in the TrailDetails component. If we
run the application, figure 3.17 shows what things would look like.

Styles scoped to
the unique ID
of a component.

76 CHAPTER 3 Working with Blazor’s component model
Figure 3.17 The green border style from the global .drawer class has been applied, even though
the TrailDetails component is using scoped CSS.

As you can see, using scoped styles doesn’t make components immune from the stan-
dard behavior of CSS. This is something to think about when deciding how to style your
components; mixing global and scoped styles could make things more complicated.

3.4.3 Using CSS preprocessors

Whether you choose to use global styles, scoped styles, or a mix of both, you can still
leverage the power of CSS preprocessors. These work similarly to the way Type-
Script does for JavaScript—as a superset language. They provide access to a richer
feature set than CSS provides alone, at the cost of having to perform some kind of
build action.

 There are many options out there when it comes to CSS preprocessors, but the
main players are:

 Less (Leaner Style Sheets; http://lesscss.org/)
 Sass (https://sass-lang.com/)
 Stylus (https://stylus-lang.com/)

They all provide similar feature sets, which offer the following enhancements over
regular CSS, just with different syntaxes:

 Mixins—Reusable groups of styles
 Variables—Works the same way as variables in C# (this has now been added to

standard CSS but doesn’t work in older browsers, whereas the preprocessor ver-
sions do)

 Nesting—The ability to define the scope of a style by writing it within another

The border from the
global .drawer class
is still being applied
to the component,
even though it’s
using scoped styling.

https://sass-lang.com/
https://stylus-lang.com/
http://lesscss.org/

773.4 Styling components
 Import—Allows us to organize large CSS files into smaller, more focused files
and then import common aspects such as variables

Choosing a preprocessor largely comes down to which syntax you prefer. My favorite
preprocessor is SCSS (https://sass-lang.com/). It has a syntax very similar to regular
CSS, which makes everything easy to read. It has also been around for a very long time,
so there’s lots of documentation and blog posts out there to help if you get stuck.

INTEGRATING A CSS PREPROCESSOR

I’m going to show you how to integrate SCSS into a Blazor app, specifically when
using scoped CSS. There are two ways we can integrate SCSS into our application:
using JavaScript tools or using .NET tools. While there are a few options out there for
integrating CSS preprocessors without using any JavaScript tooling (at least not
directly), in my opinion none of them work as well or as reliably as the JavaScript
options. But don’t fear, I’ll show you a method that requires the minimal amount of
interaction with those tools.

 If you’re adamant that you don’t want to use any JavaScript tools in your applica-
tion, then check out either of the following options:

 Web Compiler from Mads Kristensen (http://mng.bz/woQa). This hasn’t had
any meaningful updates for a couple of years, but it does still appear to work.

 WebCompiler by excubo-ag (https://github.com/excubo-ag/WebCompiler).
This is forked from Mads’s Web Compiler and looks like a promising project. It
uses a .NET CLI tool to perform the compilation of SCSS files and ties in with
MSBuild. However, it currently only supports SCSS. This means if you are using
a different preprocessor, such as Less or Stylus, you are out of luck. Configura-
tion is a bit difficult, and there is limited documentation.

The option I prefer, and the one I’ll show you, is to use a mix of NPM (Node package
manager) and MSBuild. This requires having an up-to-date version of Node.js
installed (download at https://nodejs.org/). The version I’m using is 16.13.1 and is
the latest LTS (long-term service) version.

 We will use a tool called Dart Sass (https://sass-lang.com/dart-sass), which we can
install as an NPM package called Sass (https://www.npmjs.com/package/sass). We’re
then going to use MSBuild to call this tool during the build process, specifically at the
start of the build process. This is important, as we need to compile our SCSS files to
CSS before Blazor’s compiler runs so it can pick up the compiled CSS files and bundle
them into the single [ProjectName].style.css file we talked about earlier.

What is an NPM package?
As a .NET developer, you can view NPM (Node package manager) packages as the
JavaScript equivalent of NuGet packages.

These packages are kept in an online repository at www.npmjs.org/ and are install-
able via the NPM CLI tool, which is installed as part of Node.js.

www.npmjs.org/
http://mng.bz/woQa
https://sass-lang.com/
https://github.com/excubo-ag/WebCompiler
https://nodejs.org/
https://sass-lang.com/dart-sass
https://www.npmjs.com/package/sass

78 CHAPTER 3 Working with Blazor’s component model
We need some SCSS to compile, so we’ll add a new file called TrailDetails.razor.scss
with the code shown in the following listing.

.drawer-mask {
 visibility: hidden;
 position: fixed;
 overflow: hidden;
 top: 0;
 right: 0;
 left: 0;
 bottom: 0;
 z-index: 99;
 background-color: #000000;
 opacity: 0;
 transition: opacity 0.3s ease, visibility 0.3s ease;
}

.drawer-wrapper.slide {
 .drawer-mask {
 opacity: .5;
 visibility: visible;
 }

 .drawer {
 transform: translateX(0);
 }
}

.drawer {
 display: flex;
 flex-direction: column;
 position: fixed;
 top: 0;
 right: 0;
 bottom: 0;
 width: 35em;
 overflow-y: auto;
 overflow-x: hidden;
 background-color: white;
 border-left: 0.063em solid gray;
 z-index: 100;
 transform: translateX(110%);
 transition: transform 0.3s ease, width 0.3s ease;
}

.drawer-content {
 display: flex;
 flex: 1;
 flex-direction: column;
}

.trail-details {
 padding: 20px;
}

Listing 3.14 TrailDetails.razor.scss

This is the nesting
feature from SCSS.

793.4 Styling components
.drawer-controls {
 padding: 20px;
 background-color: #ffffff;
}

This new SCSS version of the TrailDetails styles has only one slight modification:
it’s using the nesting feature from SCSS. It will allow us to confirm that the compila-
tion steps worked and that the SCSS generates CSS.

 In the root of BlazingTrails.Client, we will create a new file called package.json and
add the lines of code shown in the following listing.

{
 "scripts": {
 "sass": "sass"
 },
 "devDependencies": {
 "sass": "1.44.0"
 }
}

This file does two things: it specifies the Sass package as a development time depen-
dency of our application, and it exposes a script that will allow us to call Sass from
MSBuild.

 The other updates we need to make are in the csproj file for our app. We will
define a set of build targets that MSBuild will run through on each build before the
application is compiled (figure 3.18).

Listing 3.15 Package.json

The custom script sass calls
the sass command-line tool.

This is the declaration of the build time
dependency on the sass package.

Figure 3.18 On each build, a check will be run to make
sure NPM is installed. If it’s not, then the build will fail.
Next, if any changes have been made to the project.json
file, like updating a package version, then npm install
will be run. Finally, any SCSS files will be compiled to CSS
before the application is compiled.

Build starts.

Check NPM is
installed.

Run NPM install
if changes in

package.json.

Compile SCSS
files to CSS.

Fail build if NPM
is not found.

Compile app.

80 CHAPTER 3 Working with Blazor’s component model

ls the

S file.
The first target will check if NPM is installed on the system and fail the build if it’s not
found. If NPM is present, then a check will be made for any changes to the
package.json file. If any changes are detected, then npm install is run to make any
updates. Once that is complete, we’ll run the Sass compiler to compile any SCSS files
to CSS. Listing 3.16 shows the configuration in the csproj file.

NOTE Be sure to double-check the following changes to the csproj file.
Errors may result in build errors or changes to SCSS files not being picked up.

<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <NpmLastInstall>node_modules/.last-install
 ➥</NpmLastInstall>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly"
 ➥Version="6.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly.
 ➥DevServer" Version="6.0.0" PrivateAssets="all" />
 </ItemGroup>

 <ItemGroup>
 <Watch Include="**/*.scss" />
 <None Update="**/*.css" Watch="false" />
 </ItemGroup>

 <Target Name="CheckForNpm" BeforeTargets="RunNpmInstall">
 <Exec Command="npm --version"
 ➥ContinueOnError="true">
 <Output TaskParameter="ExitCode"
 ➥PropertyName="ErrorCode" />
 </Exec>
 <Error Condition="'$(ErrorCode)' != '0'"
 ➥Text="NPM is required to build this project." />
 </Target>

 <Target Name="RunNpmInstall"
 ➥BeforeTargets="CompileScopedScss" Inputs="package.json"
 ➥Outputs="$(NpmLastInstall)">
 <Exec Command="npm install" />
 <Touch Files="$(NpmLastInstall)"
 ➥AlwaysCreate="true" />
 </Target>

 <Target Name="CompileScopedScss"
 ➥BeforeTargets="Compile">

Listing 3.16 BlazingTrails.Client.csproj

Defines a file that is used to
record the last time an NPM
install was performed

If running the app using dotnet watch, this tel
watch command to only rebuild the app when
changes are made to SCSS files and not the CS
Without this, we end up in an infinite loop.

Runs the command
npm --version to check
if NPM is installed. If a
nonzero error code is
returned, then NPM is
not installed and an
error is shown on the
build.

Run npm install but only when package.json
is newer than NpmLastInstall specified in the
PropertyGroup. This means npm install will
only be run when something has changed
and not on every build.

813.4 Styling components
 <ItemGroup>
 <ScopedScssFiles
 ➥Include="Features/**/*.razor.scss" />
 </ItemGroup>

 <Exec Command="npm run sass ––
 ➥%(ScopedScssFiles.Identity)
 ➥%(relativedir)%(filename).css" />
 </Target>

</Project>

First, we added a new item group. This isn’t related to running the CSS preprocessing,
but it solves an issue that appears when running the app using dotnet watch. This
instructs the watch command to respond only to changes in SCSS files and not CSS
files. Without this, developers running the app from the command line would end up
in an infinite loop.

 Next, we added a Target element called CheckForNpm. This runs first and will do
exactly what its name describes. It executes the command npm –-version, then
checks if the error code is something other than 0. A 0 indicates that the com-
mand was run successfully. If it’s not 0, then an error is thrown and the build will fail
(figure 3.19).

Figure 3.19 If NPM is not installed, the build will fail and produce the above error.

The second target, RunNpmInstall, is a conditional target and will run only if there
is no node_modules folder, or the package.json has been updated in some way. This
condition is checked by comparing the last modified timestamp from the package
.json file (input) and the NpmLastInstall (output). NpmLastInstall is a property
that is defined in the PropertyGroup section, and it contains the path to a file,
node_modules/.last-install. This file is either created or written to any time it
doesn’t exist or whenever an update is made to package.json.

 Finally, we come to the third target, CompileScopedCSS. This is the target that
compiles any SCSS file into CSS. The list of files it compiles comes from the
ItemGroup we added. It scans the application and retrieves a list of all the SCSS files
that are in the Features folder.

The ItemGroup searches for
all scoped SCSS files inside
the Features folder.

This runs the sass npm package to
compile any SCSS files to CSS via the
script defined in the package.json file.

82 CHAPTER 3 Working with Blazor’s component model
 With those changes in place, we can run a build for the application. The result is
shown in figure 3.20.

Figure 3.20 The build output shows each of the targets we defined being run before the main build
happens.

Studying the build log, we can see two of the targets we added being run. The version
number of NPM is output to the log by the first target. Then we see the Sass script
being executed and our TrailDetails.razor.scss file being compiled into CSS. Depend-
ing on what version of Node you have installed, you may see some output from the
npm install command as well. Figure 3.21 shows the compiled CSS file produced
from the build process.

If we check the Home feature folder, there should be a new CSS file there, as shown in
figure 3.21.

Summary
 Components can be structured in different ways: they can be defined in a single

file containing both markup and logic, or they can be defined in two different
files, one containing markup and the other the logic.

 Components have multiple life cycle methods that can be hooked into to per-
form actions at defined points on that life cycle.

Checks for
NPM target

CompileScopedScss target

The new CSS file

Figure 3.21 The newly
generated CSS file produced
during the build process

83Summary
 The three commonly used life cycle methods are OnInitialized/On-
InitializedAsync, OnParametersSet/OnParametersSetAsync, and
OnAfterRender/OnAfterRenderAsync.

 The OnInitialized/OnInitializedAsync method runs only once in the
lifetime of a component. The other methods can run multiple times.

 Components can implement IDisposable or IAsyncDisposable to get
access to an extra life cycle method, Dispose/DisposeAsync.

 Parent components can pass data into child components using component
parameters.

 Component parameters form the public API of a component.
 Events can be defined as component parameters, which allow data to be passed

from child to parent.
 Events defined using component parameters are just delegates.
 A parent handling a child component’s event, defined as either Action/

Action<T> or Func/Func<T>, must call StateHasChanged manually to trig-
ger any required UI updates.

 Child components can define their events using the type EventCallback or
EventCallback<T>, which will automatically call StateHasChanged on the
parent component once the handler has been run.

 Components can be styled using global CSS, scoped CSS, or a mix of both.
 Scoped styles are created by defining a stylesheet with the naming convention

[ComponentName].razor.css.
 If mixing global and scoped styles, it’s important to remember that global styles

can still affect components using scoped CSS.
 It’s possible to use CSS preprocessors such as SCSS with Blazor’s scoped CSS

feature.

Routing
Routing, or navigation, is a fundamental concept when building web applications.
Traditionally, moving from one page to another was a case of loading an entirely
new, physical HTML page from the server. In more modern server-based frame-
works such as MVC or Razor Pages, those pages are dynamically compiled on the
server before being sent to the client, but the process is still the same. However, in
single-page applications, things work a little differently.

 As always, to help you learn about the concepts we’re going to uncover in this
chapter, we’ll be building a new feature into Blazing Trails. Figure 4.1 shows how
the feature will look once we’re done.

This chapter covers
 Distinguishing traditional routing from client-side

routing

 Defining page components

 Triggering navigation programmatically

 Passing data via the URL

 Working with query strings
84

854.1 Introducing client-side routing
Figure 4.1 The new search feature we’ll be building in this chapter

This time around, we’ll be adding a search function to the app. This is going to allow
the user to search for a trail by name or location. We’ll use routing to navigate from the
home page to the search page programmatically, passing the search term via the URL.
Once on the search page, we’ll extract it and then find any trails that match the term.

 We’ll also build the ability to filter any results. We’ll explore a couple of ways to do
this using multiple route templates and query strings that will allow the user to book-
mark the search, including any filters, and be able to directly reload the results.

4.1 Introducing client-side routing
Client-side routing differs substantially from traditional navigation in server-based web
applications. To navigate to another page in traditional multipage apps, a request is
made to the server for the new page. The new page is then downloaded to the
browser, and the browser renders it. With SPAs, generally speaking, all of the pages
reside on the client and navigating between them is handled by a client-side router.

4.1.1 Blazor’s router

In Blazor, the router is just another component, and you can find it inside the App
component (App.razor). Listing 4.1 shows the Router component.

86 CHAPTER 4 Routing

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <PageTitle>Not found</PageTitle>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>
 </NotFound>
</Router>

When a Blazor app first loads, the Router component uses reflection to scan the
application’s assemblies to find routable components, or what I prefer to call page compo-
nents. These are components that have a special directive declared in them called
@page. It knows what assembly to scan via the AppAssembly parameter. In larger
applications, it’s possible that page components could be in multiple assemblies. In
this case, the Router component has an AdditionalAssemblies parameter that
can be defined that takes an IEnumerable<Assembly>.

 The @page directive allows us to specify what route the component will be loaded
for. The router then stores the type of the component and the route it handles in a
routing table. The router then listens for navigation events via the process described
in figure 4.2.

 When a link is clicked, a navigation event is triggered. Blazor has infrastructure
that lives in the JavaScript world, and one of the things that code does is intercept var-
ious events, including navigation events.

 The URL that the link points to is passed to a JavaScript service called
NavigationManager; this service performs several checks to verify that the event
should be handled by client-side routing. These checks include ensuring

 Blazor’s router is active.
 No modifier keys were pressed, such as Shift or Control, which would signal the

user wanted to open the link in a new tab/window.
 No target attribute was present on the link. Again, this would signal that the

link should be opened in another tab/window. The only exception to this is a
target of _self; this means open in the current tab/window.

 The link falls within the scope of the base tag defined in the host page of the
Blazor app.

Listing 4.1 The router component found in the App.razor file

The router uses reflection to scan for page
components. The AppAssembly parameter is
used to tell the router where to scan.

The Found template is where
page components that match
a requested route are loaded.

The NotFound
template is shown
when the router can’t
find a match for the
requested route in its
routing table.

874.1 Introducing client-side routing
Figure 4.2 The process of a link being clicked through to a page component being loaded that handles
the requested route specified in the link

If all these checks pass, then the browser’s history will be updated along with the Uni-
form Resource Identifier (URI). This enables features such as the browser’s Forward
and Back buttons to function and the appearance of traditional full-page navigation.
The final step the service takes is to raise an event that triggers some JavaScript
interop. This event is picked up by a service with the same name, Navigation-
Manager, that lives in the C# world.

 When the C# NavigationManager receives the event, it updates its URI property.
This property stores the current URL so components can access it if required. It then
triggers an event called LocationChanged. Blazor’s router subscribes to this event,
and when it fires, the router checks the URI property of the NavigationManager
against its routing table to find a match. If one is found, then the component is
loaded; otherwise a NotFound template is rendered.

Link is clicked, triggering a navigation event.

Navigation Manager

1. Verify event should be
 handled by client-side routing.

2. Update browser history and
 address bar.

3. Raise Notify Location
 Changed event.

Navigation Manager

1. Update URI property.

2. Raise LocationChanged event.

JavaScript C#

The Router component, which subscribes
to the LocationChanged event, checks
its routing table for any component
that handles the requested route.

If a match is found, then the router
loads the matching component.
If no match is found, then the NotFound
template is loaded.

Once in C# code, the event raised in JavaScript is
handled by another service called Navigation Manager.

It updates its URI property, which stores the current
URL, and then it raises an event called LocationChanged.

The Navigation Manager performs several
checks to make sure that the event should
be handled by client-side routing.

If these pass, it will use browser APls
to update the browser history and the
address bar.

Finally, it will raise an event that
uses JavaScript interop to call into
its namesake in C# code.

When a navigation
event occurs as a result
of a link being clicked,
it is intercepted by a
JavaScript service called
Navigation Manager.

Router

1. Check routing table for
 component matching route.

2b. Show NotFound
 template.

2a. Load
 component.

88 CHAPTER 4 Routing
4.1.2 Defining page components

Page components are regular components that declare a specific directive—the
@page directive. It has two parts, the directive name and the route template, and
when declared looks like this:

@page "/my-awesome-page"

The route template is the section in quotes. This defines the URL that the component
will handle—it must always start with a forward slash (/); otherwise you will receive a
compiler error. Also, route templates must be unique. Be careful not to declare the
same route template on multiple components, as this will result in a run-time error. As
we’ll see later, it’s perfectly fine to have a single component declare multiple @page
directives and handle multiple routes.

To begin building our new search feature for Blazing Trails, let’s add a new page
component to the application. Add a new Razor component in the Features > Home
folder called SearchPage.razor with the code shown in the following listing.

@page "/search"

<PageTitle>Search Trails - Blazing Trails</PageTitle>

<h3>Search results</h3>

As you can see in this listing, defining page components is quite simple. The @page
directive is added at the top of the page, and then the route that the component
should handle is specified using the route template in quotes.

 As I mentioned previously, the route template must be in quotes and must start
with a /. If this is missing, then you will get a build error from the compiler.

 You can now build the app and run it. You will need to type in the address of the
search page manually, as we haven’t linked to it yet. Figure 4.3 shows how the new
page looks.

Figure 4.3 Our app’s new search page

Listing 4.2 SearchPage.razor

The @page directive declares
the component as routable,
and the route template,
defined in the quotes, specifies
which route the component
should be loaded for.

The title in the tab has been updated
by the PageTitle component.

894.2 Navigating between pages programmatically
This isn’t very inspiring right now, but in the next section we’ll create the search box
that will link to this page.

4.2 Navigating between pages programmatically
One of the first things we learn when building web pages is how to link one page to
another using hyperlinks. This method is still a staple of modern SPA applications and
works exactly as it would in a traditional server-based app, but there are many scenar-
ios where programmatic navigation is required.

 In Blazor, programmatic navigation is achieved via the NavigationManager
.NavigateTo() method. We’ll use this to redirect users after they’ve entered their
search term. But first, we need to create a new component in the Home feature folder
called TrailSearch.razor. This component will house the search box and logic for
redirecting to the SearchPage. The following listing shows the code.

@inject NavigationManager NavManager

<div class="jumbotron">
 <h1 class="display-4 text-center">Welcome to Blazing Trails</h1>
 <p class="lead text-center">Find the most beautiful hiking trails
 ➥using our blazing fast search!</p>
 <p class="mt-4">
 <input @onkeydown="SearchForTrail"
 @bind="_searchTerm"
 @bind:event="oninput"
 type="text"
 placeholder="Search for a trail..."
 class="form-control form-control-lg" />
 </p>
</div>

@code {
 private string _searchTerm = "";

 private void SearchForTrail(KeyboardEventArgs args)
 {
 if (args.Key != "Enter") return;
 NavManager.NavigateTo($"/search/{_searchTerm}");
 }
}

From the user’s perspective, they are going to enter their search phrase into the
search box and then press Enter to trigger the search. To achieve this, we’re injecting
an instance of the NavigationManager, which we use in the SearchForTrail
method to redirect the user to the search page.

 The other point of interest here is the @bind directive. We’ll see more of this in
chapter 5 when we talk about forms and validation, but this is how we perform two-way

Listing 4.3 TrailSearch.razor

An instance of the NavigationManager
is injected using the @inject directive.

The SearchForTrail method
is called every time a
keydown event is fired.

The @bind directive allows two-way binding
in Blazor. Here we’re binding the text the
user inputs to the _searchTerm field.

Update the _searchTerm
field whenever the oninput
event fires, essentially when
a new character is entered.

Return if the key pressed
wasn’t the Enter key.

Use NavigationManager.NavigateTo to
programmatically navigate to the search page,

passing the search term entered by the user.

90 CHAPTER 4 Routing
binding in Blazor. Here we’re binding the value typed into the input to the _search-
Term field:

@bind="_searchTerm"

By default, this binding happens when the control loses focus. In our case, the control
never loses focus, so when the SearchForTrail method is called, the value of
_searchTerm would still be null. To fix this, we’ve changed the event the bind direc-
tive uses to update the bound value:

@bind:event="oninput"

Instead of the default onchange event, we’re using the oninput event, which updates
the _searchTerm field every time a new character is typed into the input. Now, when
the SearchForTrail method is called, the _searchTerm field is populated correctly.

 We’re also going to add some scoped styles for the TrailSearch component. Add
a new SCSS file in the Home folder called TrailSearch.razor.scss, and add the code
shown in the following listing.

.jumbotron {
 background: none;

 input {
 border: 2px solid var(--brand);
 }
}

This will remove the default background color of the Bootstrap jumbotron. It also
adds a border to the search input.

 We just need to add our new TrailSearch component to the HomePage. The fol-
lowing listing shows a subsection of the HomePage component where the Trail-
Search should be added.

<TrailDetails Trail="_selectedTrail" />

<TrailSearch />

<div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" OnSelected="HandleTrailSelected" />
 }
</div>

Once the HomePage component is updated, we can run the application to check
everything is working as expected (figure 4.4).

Listing 4.4 TrailSearch.razor.scss

Listing 4.5 HomePage.razor with the new TrailSearch component

The TrailSearch component is referenced
directly under the TrailDetails component.

914.2 Navigating between pages programmatically
Figure 4.4 The home page updated with the new TrailSearch component.

Initially everything is looking great. The TrailSearch is rendering as expected, but
if we type in a search phase and press Return, we see a message stating there’s nothing
at this address (figure 4.5).

Figure 4.5 Navigating to the search page shows a message indicating that
there is no component handling this route.

The new TrailSearch component is rendered
at the top of the HomePage component.

The title in the tab has been updated by the
PageTitle component in the NotFound template.

Page content is defined within the
Router component, by default.

92 CHAPTER 4 Routing
This message is produced by Blazor’s router and is configurable in the NotFound tem-
plate section, shown in the following listing.

<Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <RouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 <NotFound>
 <PageTitle>Not found</PageTitle>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this
 ➥address.</p>
 </LayoutView>
 </NotFound>
</Router>

The router’s NotFound template can be used to customize what is shown when a
route doesn’t have a component to handle it. By default, the router is configured to
display some HTML with the message “Sorry, there’s nothing at this address.” But you
could change this to display a component instead of arbitrary HTML if you prefer.

 We’re seeing this because our SearchPage has the following route template:

@page "/search"

But we’re passing the search term as part of the URL, "/search/coastal". Blazor
matches routes to components by breaking down the URL into segments and then
doing a string comparison on each segment. In this case there would be two segments:

 Search
 Coastal

The router also does this when it stores the route template of a page component. Our
SearchPage’s route template has only one segment:

 Search

When the router compares the requested route to the one stored in its routing table,
they don’t match, as the count is wrong. But even if the count matched, the next
check is a string comparison and we can’t have every possible term a user might
search on in a route template. This is where route parameters come into play. Let’s
look at those next.

4.3 Passing data between pages using route parameters
When navigating between pages, there are times we want to pass arbitrary data as part
of the URL—a case in point being our trail search needing to pass the search term to
the search page. We can do this by using a special feature of route templates called
template parameters.

Listing 4.6 The router component’s NotFound template

The NotFound template
defines what is shown when
no component can be found
to handle a given route.

This is the default message
shown for an invalid route.

934.3 Passing data between pages using route parameters

 Template parameters are sections of a route that are dynamic, rather than static
text. You can think of them in the same way as arguments on a method. They are
placeholders for a value that will be supplied later. They are paired with a component
parameter that matches the name of the route parameter. When the component is
executed, the value in the segment of the route defined by the route parameter is
passed into the component parameter so we can access it in code.

 The following listing shows the SearchPage component updated with a route
parameter to capture the search term.

@page "/search/{SearchTerm}"

<h3>Search results for "@SearchTerm"</h3>

@code {
 [Parameter]
 public string SearchTerm { get; set; } = default!;
}

We’ve defined the second section of the route template to be a route parameter called
SearchTerm. Route parameters are defined inside a route segment by using curly
braces ({}); there can be only one per segment. We’ve also declared a component
parameter with a name that matches that of the route parameter—the match is case-
insensitive. We’ve also initialized the new parameter to its default value and applied
the null forgiving operator. This is because it can’t be null. If there is no search term
in the URL, then Blazor’s router won’t match the component and it won’t be loaded.

 To prove that everything is working, the page heading has been updated to show
the search term. If we run the app, type in a search term, and press Enter, we should
now see the SearchPage displaying the term we searched for (figure 4.6).

Figure 4.6 Typing a search term now correctly loads the SearchPage component and
displays the term that was searched for.

Everything is now working as expected, and we can access the search term program-
matically. Next we can add the logic so the search page displays matching trails. List-
ing 4.8 shows the updated code for SearchPage.razor.

Listing 4.7 SearchPage.razor: Route template with route parameter

Route parameters are defined using
curly braces in a route segment.

A component parameter
matching the name of the
route parameter is required
to capture its value.

The search term is now
displayed in the header.

urns
ve
e

e
.

94 CHAPTER 4 Routing

@page "/search/{searchterm}"
@inject HttpClient Http
@inject NavigationManager NavManager

<nav aria-label="breadcrumb">
 <ol class="breadcrumb">
 <li class="breadcrumb-item">
 Home

 <li class="breadcrumb-item active"
 ➥aria-current="page">Search

</nav>

<h3 class="mt-5 mb-4">Search results for "@SearchTerm"</h3>

@if (_searchResults == null)
{
 <p>Loading search results...</p>
}
else
{
 <TrailDetails Trail="_selectedTrail" />
 <div class="grid">
 @foreach (var trail in _searchResults)
 {
 <TrailCard Trail="trail" OnSelected="HandleTrailSelected" />
 }
 </div>
}

@code {
 private IEnumerable<Trail>? _searchResults;
 private Trail? _selectedTrail;

 [Parameter] public string SearchTerm { get; set; } = default!;

 protected override async Task OnInitializedAsync()
 {
 try
 {
 var allTrails = await Http.GetFromJsonAsync
 ➥<IEnumerable<Trail>>("trails/trail-data.json");
 _searchResults = allTrails!
 ➥.Where(x => x.Name.Contains(SearchTerm,
 ➥StringComparison.CurrentCultureIgnoreCase) ||
 ➥x.Location.Contains(SearchTerm,
 ➥StringComparison.CurrentCultureIgnoreCase));
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }

Listing 4.8 Loading trails that match the search term

Breadcrumbs allow
navigation back to
the home page.

When the component is loaded,
it will get all the trails from the

dummy data file and find any
that have a name or location

that contains the search term.

Technically, the call to
GetFromJsonAsync ret
a null. However, we ha
specific test data so w
can safely ignore the
potential null using th
null forgiving operator

954.3 Passing data between pages using route parameters
 private void HandleTrailSelected(Trail trail)
 => _selectedTrail = trail;
}

While we’ve added a fair amount of code, most of it is familiar. The markup for dis-
playing trails is essentially the same as we used on the HomePage. We’ve also included
the TrailDetails component so the user can still click on a trail to view its details.

 One extra feature is the breadcrumb section at the top of the page. This is to allow
easy navigation back to the home page without having to use the browser’s Back but-
ton. Another slight change is the logic in OnInitializedAsync, which loads the
trails. We’re now using a bit of Linq to filter the trails down to only those that contain
the search term in either their name or location. Running the app and typing in a
search term should now show any trails that match the term (figure 4.7).

Figure 4.7 Trails matching the search term will now be displayed in a similar style to the
home page.

96 CHAPTER 4 Routing
Things are looking rather good for our search page. It now correctly displays trails
that match the search term. But wouldn’t it be nice if we could also filter the results on
the trail’s length? This seems like a useful addition to our search, and it would also
give us a chance to look at multiple routes and route constraints.

4.4 Handling multiple routes with a single component
It’s possible to have a single component be responsible for multiple routes. This can
be useful for several reasons—for example, if you’re moving to a new URL structure
and you need to support both the old and new versions for a period. Another example
is functionality reuse, and this is what we will implement next.

 We’re going to add a max length filter to our search results page. This will allow
the user to limit search results to trails that have a length less than or equal to its value.
We could filter the results using a method on the component and not update the URL
at all; this would be quite simple. However, this approach wouldn’t allow the users of
Blazing Trails to bookmark their search filters.

 Instead, we’ll add a second route to the SearchPage component that will contain
the max length filter. Then, if a filter is entered, we will redirect the user to the same
page using the second route. We can then reuse all the existing functionality with a
small addition to handle the max length filter.

 First, we’ll add an additional page directive to the SearchPage and a component
parameter to store its value. See the following listing.

@page "/search/{SearchTerm}"
@page "/search/{SearchTerm}/maxlength/{MaxLength:int}"

// Other code omitted

@code {
 [Parameter]
 public string SearchTerm { get; set; } = default!;

 [Parameter]
 public int? MaxLength { get; set; }

 // Other code omitted
}

There is a subtle but significant difference in the definition of the second @page
directive’s route template. Where the MaxLength route parameter is defined, there is
some additional syntax: :int. This is called a route constraint.

 Route constraints are important when dealing with route parameters that need to
be worked with as a nonstring type. By default, all route parameters are considered
strings by Blazor. This is a sensible default, as URLs are strings; therefore, values that

Listing 4.9 SearchPage.razor: Shows multiple @page directives

Shows the
original @page
directive and
matching
component
parameter

Shows the new @page
directive and matching
component parameter

974.4 Handling multiple routes with a single component
are passed in the URL must be able to be represented as a string. But in our case, we
need to work with MaxLength as an integer in our code.

We can tell Blazor that the value in that route parameter must be converted to an
integer by using the :int route constraint. Once a route constraint has been applied,
it becomes part of the checks Blazor performs to match a route.

Given our route template, if we try to load the page using the following route,
/search/uk/maxlength/ten, Blazor would not consider this a match, as ten can’t
be converted to an integer value. However, the route /search/uk/maxlength/10
would match, as 10 is a valid integer.

 For a full list of all route constraints supported by the framework, you can check
the following page on the official docs (http://mng.bz/d2xg).

 With the additional route in place, we can turn our attention to adding the code
needed for filtering. We’ll create the search filter as a new component called Search-
Filter.razor in the Home feature folder. The following listing shows the code.

@inject NavigationManager NavManager

<div class="filters">
 <label for="maxLength">Max Length</label>
 <input id="maxLength"
 type="number"
 class="form-control"
 @bind="_maxLength" />
 <button class="btn btn-outline-primary"
 @onclick="FilterSearchResults">
 Filter
 </button>
 <button class="btn btn-outline-secondary"
 @onclick="ClearSearchFilter">
 Clear
 </button>
</div>

@code {
 private int _maxLength;

 [Parameter, EditorRequired]
 public string SearchTerm { get; set; } = default!;

 private void FilterSearchResults()
 => NavManager.NavigateTo(
 ➥$"/search/{SearchTerm}/maxlength/{_maxLength}");

 private void ClearSearchFilter()
 {
 _maxLength = 0;

Listing 4.10 SearchFilter.razor

The value entered by the user is
bound to the _maxLength field.

Clicking the Filter button executes
the FilterSearchResults method.

Clearing an existing filter is handled
by the ClearSearchFilter method.

To filter the search
result, we navigate
to the second route
we defined for the
component.

http://mng.bz/d2xg

98 CHAPTER 4 Routing
 NavManager.NavigateTo($"/search/{SearchTerm}");
 }
}

The SearchFilter component uses an HTML input to record the desired max trail
length from the user. When the Filter button is clicked, the NavigationManager
.NavigateTo method is used to redirect the user to the second route we added to
the SearchPage component. To do this, the SearchFilter component needs to
know the search term, so we’re specifying that as a component parameter to be sup-
plied by the SearchPage. To clear a filter, the Clear button redirects the user to the
original route.

 We will also add a few styles to make the search filter sit to the right of the page.
Let’s add a new Sass file called SearchFilter.razor.scss into the Home feature folder with
the styles shown in the following listing.

.filters {
 display: flex;
 margin-bottom: 20px;
 align-items: baseline;
 justify-content: flex-end;

 label {
 text-transform: uppercase;
 margin-right: 10px;
 }

 input {
 margin-right: 20px;
 width: 100px;
 }

 button:first-of-type {
 margin-right: 10px;
 }
}

With the styles in place, we just need to reference the SearchFilter component in
the SearchPage. We’ll add it just under the page header:

<h3 class="mt-5 mb-4">Search results for "@SearchTerm"</h3>
<SearchFilter SearchTerm="@SearchTerm" />

Running the app now should produce the UI shown in figure 4.8.
 The last task we have is to implement the filtering functionality (listing 4.12).

Notice that entering a max length and pressing filter will update the URL, but the
search results are not updated.

Listing 4.11 SearchFilter.razor.scss: SearchFilter styling

To clear the filter,
we navigate to the
original route.

994.4 Handling multiple routes with a single component
Figure 4.8 The new SearchFilter component rendered into the SearchPage

private IEnumerable<Trail> _cachedSearchResults
➥= Array.Empty<Trail>();

// Other code omitted

protected override async Task OnInitializedAsync()
{
 try
 {
 var allTrails = await Http.GetFromJsonAsync
 ➥<IEnumerable<Trail>>("trails/trail-data.json");
 _searchResults = allTrails!.Where(x => x.Name.Contains(SearchTerm,
 ➥StringComparison.CurrentCultureIgnoreCase)
 ➥|| x.Location.Contains(SearchTerm,
 ➥StringComparison.CurrentCultureIgnoreCase));
 _cachedSearchResults = _searchResults;
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
}

protected override void OnParametersSet()
{
 if (_cachedSearchResults.Any()
 && MaxLength.HasValue)

Listing 4.12 SearchPage.razor: Logic to filter search results

The new SearchFilter component

Stores a copy of the
unfiltered search results

Stores a copy of the
unfiltered search results

Check for cached search results and a filter value;
if both are present, then filter the results.

100 CHAPTER 4 Routing
 {
 _searchResults = _cachedSearchResults
 ➥.Where(x => x.Length <= MaxLength.Value);
 }
 else if (_cachedSearchResults.Any()
 && MaxLength is null)
 {
 _searchResults = _cachedSearchResults;
 }
}

Looking at this code, you might be asking why we are doing the filtering in the
OnParametersSet life cycle method and not in the OnInitialized life cycle
method. Let me explain.

 When we enter a filter, the URL is updated but the SearchPage component is not
destroyed and re-created. When changing routes, Blazor performs a diff just like it
would with any other UI update. In our case, we’re navigating to the same component
that is already rendered, so nothing in the UI needs to change.

As we learned in chapter 3, the OnInitialized life cycle method executes only
once in a component’s life cycle. Therefore, it won’t execute when we add a filter.
This means our filter code must go somewhere else. The correct life cycle method is
OnParametersSet—this will get executed every time the filter is updated.

 Our SearchPage component is now complete. Users can search for trails and then
filter the results based on how far they wish to hike and even bookmark the results for
easy access another time. Figure 4.9 shows the SearchPage with an active filter.

Figure 4.9 The finished SearchPage component with an active max length filter applied

If there are cached search results but no filter,
then reset the results to the unfiltered set.

Max length is added to the URL
so the search can be bookmarked.

The finished search page
allows the user to filter
by length and displays
two results when a filter
of 9 km is set.

1014.5 Working with query strings
In the last section of this chapter, I want to show you an alternative approach to our fil-
ter feature. Instead of using multiple routes, we can use query strings. Query strings
are not supported by Blazor out of the box and require some extra configuration to
use correctly, but they are a common feature of web applications, and knowing how to
work with them in Blazor is a useful skill.

4.5 Working with query strings
Query strings have been an integral part of web applications since the early days of
web development. A query string is an instance or collection of key-value pairs at the
end of a URL. An example query string looks like this:

www.blazor.net?blazor=awesome

The query string starts with a question mark (?), then comes the key-value pair sepa-
rated by an equals sign (=). Query strings can be a good option when you want to
work with multiple optional values. Take our search filter feature: using a route to
store the max length is fine, but imagine we added an additional filter, max time. This
means we need to update our filter route to the following:

@page "/search/{SearchTerm}/maxlength/{MaxLength:int}/maxtime/{Hours:int}"

Route matching only works when all segments are present, so if the user selects only
max hours, what do we do about max length? We could give it a default value of 0 and
update our logic to check for zero instead of null. Or we could add another route to
the page that contained max time but not max length.

 Either of these would solve the issue, but what happens if we added another and
another? This solution just doesn’t scale with lots of optional values.

 With query strings, we can include as many or as few key-value pairs as we wish.
Because query strings sit outside of Blazor’s routing system, we don’t need to declare
lots of route templates to cover all combinations of values.

 Before .NET 6, working with query strings in Blazor was a completely manual
process—there was nothing built into the framework to help us. However, with
.NET 6, two important features were added that make working with query strings a
breeze: the SupplyParameterFromQuery attribute and the query-string helper
methods on NavigationManager. We will use these features to help improve the
design of our trail search filters.

4.5.1 Setting query-string values

We’re going to add an additional filter to our search that allows the user to filter trails
based on how long they take to walk in hours. We’ll call this max time. This means
that users will be able to filter results based on either max length, max time, or both.

 We’ll start in the SearchFilter component and add a new field to store the max
time as well as a new label and HTML input to record it (listing 4.13).

http://www.blazor.net?blazor=awesome

102 CHAPTER 4 Routing

//Other code omitted

<label for="maxLength">Max Length</label>
<input id="maxLength"
 type="number"
 class="form-control"
 @bind="_maxLength" />
<label for="maxTime">Max Time (hours)</label>
<input id="maxTime"
 type="number"
 class="form-control"
 @bind="_maxTime" />

//Other code omitted

@code {
 private int _maxLength;
 private int _maxTime;

 // Other code omitted
}

With the ability to record the max time from the user, we can update the Filter-
SearchResults method to add our filters as query-string values instead of route
parameters. We’ll take advantage of the new query-string helpers introduced in .NET 6
to do this. The following listing shows the new FilterSearchResults method.

private void FilterSearchResults()
{
 var uriWithQuerystring =
 ➥NavManager.GetUriWithQueryParameters(
 ➥new Dictionary<string, object?>()
 {
 [nameof(SearchPage.MaxLength)] =
 ➥_maxLength == 0 ? null : _maxLength,
 [nameof(SearchPage.MaxTime)] =
 ➥_maxTime == 0 ? null : _maxTime
 });

 NavManager.NavigateTo(uriWithQuerystring);
}

We use the GetUriWithQueryParameters method to construct a new URI contain-
ing a query string. There are two overloads of this method. The one we’re using will
return the current URI with the supplied key-value pairs attached as a query string.
The other overload takes two arguments, a URI and a dictionary. It returns a new URI
using the supplied URI as the base with the query string attached.

Listing 4.13 SearchFilter.razor: New max time field

Listing 4.14 FilterSearchResults adding filters as query strings

The new HTML input
is bound to the
_maxTime field.

Constructs a URI containing
the key-value pairs provided
as a query string

If the value of a key is null, the method
will omit the entry from the query string.

Navigates to the URI
with the query string

1034.5 Working with query strings
 There is also a singular version of this method available called GetUriWith-
QueryParameter. This method takes a name and a value and returns the current
URI with the supplied name and value as a query string.

 The GetUriWithQueryParameters method takes a dictionary, and depending on
the value of a key, it will include or omit that value from the query string. In our code,
if either _maxLength or _maxTime are 0, we don’t want to include that entry on the
query string. By setting their value to null, they will be ignored when the query string
is built.

Once we have our URI with a query string, we can navigate to it using the
NavigationManager.NavigateTo method. One other piece of housekeeping we
must do is add the new _maxTime field to the ClearSearchFilter method. This
can be added just underneath the existing _maxLength field:

maxTime = 0;

Before we can run the app, we need to update the SearchPage. You’ll notice that
when we added the key-value pairs to the dictionary we passed into the GetUriWith-
QueryParameters method, we used nameof()to define the name of the keys—
referencing two properties on the SearchPage. This is a great technique to avoid
magic strings; however, we need to add the MaxTime property, as it currently doesn’t
exist. We also need to make another small change while we’re there.

4.5.2 Retrieving query-string values using SupplyParameterFromQuery

Our SearchFilter component is now constructing a URI with the relevant values
contained in a query string. But how are we going to retrieve those values in the
SearchPage so we can do something with them? Well, we’re going to use parameters
decorated with a special attribute called SupplyParameterFromQuery. When we
create a parameter on a component and add this attribute, Blazor will attempt to set
the value of the property based on a query string with a matching name. This is why
using the nameof() technique is so useful: it ensures that the key name used in the
query string always matches that of the destination parameter.

 Let’s update the SearchPage’s MaxLength parameter with the Supply-
ParameterFromQuery attribute and add the new MaxTime parameter while we’re at
it. The resulting code should look like this:

[Parameter, SupplyParameterFromQuery] public int? MaxLength { get; set; }
[Parameter, SupplyParameterFromQuery] public int? MaxTime { get; set; }

Note that we’re still including the Parameter attribute. The SupplyParameter-
FromQuery attribute works with the Parameter attribute. If both aren’t added, the
property won’t be set.

 Now that we can receive the values from the query string, we can do something with
them. We’re going to add a new method, UpdateFilters, that will filter the search
results based on the values of MaxLength and MaxTime (listing 4.15).

104 CHAPTER 4 Routing
private void UpdateFilters()
{
 var filters = new List<Func<Trail, bool>>();

 if (MaxLength is not null && MaxLength > 0)
 {
 filters.Add(x => x.Length <= MaxLength);
 }

 if (MaxTime is not null && MaxTime > 0)
 {
 filters.Add(x => x.TimeInMinutes
 ➥<= MaxTime * 60);
 }

 if (filters.Any())
 {
 _searchResults = _cachedSearchResults
 ➥.Where(trail => filters.All(filter => filter(trail)));
 }
 else
 {
 _searchResults = _cachedSearchResults;
 }
}

The UpdateFilters method builds up a list of lambda expressions that are used to
filter the cached search results. We check if a filter is defined (it’s not null and has a
value greater than 0) and add lambdas only for the filters that are present. If no filters
are present, then we use the cached search results, as-is.

 We now need to call the UpdateFilters method at the appropriate time. As
query-string values are handled in the same way as any other parameters, when they
change, the OnParametersSet life cycle method will be called. This means that we
can update the current OnParametersSet implementation to just call the Update-
Filters method.

protected override void OnParametersSet()
 => UpdateFilters();

We can now run the app and test out our search filters. Figure 4.10 shows the result of
entering some values into the filters.

 As we can see, the values entered into the search filters are now being added to the
URL as a query string. The code we wrote is pulling those values out and filtering the
original results list so only the trails matching our criteria are displayed.

 There is one slight issue with our code. If you copy the URL and open the
same address in another tab, you’ll notice the values in the search filter inputs are not
being set to those in the query string, even though the results are showing correctly
(figure 4.11).

Listing 4.15 SearchPage.razor: UpdateFilters method

The filters variable will hold a list
of lambda expressions based on
which search filters are present.

If a max length filter is
defined, add the lambda to
filter it to the filters list.

If a max time filter is
defined, add the lambda to
filter it to the filters list.

Otherwise, use the unfiltered
cached search results.

If there are any filters, filter the
cached search results using them.

1054.5 Working with query strings
Figure 4.10 The search filters added to the URL as a query string once
the Filter button is clicked

Figure 4.11 When loading the app directly to the search page with filters, the
 search inputs are not set correctly.

Setting the search filters and clicking Filter
updates the page with the filter values
added to the URL as a query string.

When loading the app
directly to the search
page with filters, the
search filter inputs
are not being set
correctly.

106 CHAPTER 4 Routing
To fix this, we need to pass in any existing search filters from the SearchPage to the
SearchFilter. Let’s add a new parameter for each of the filters to the Search-
Filter component:

[Parameter] public int? MaxLength { get; set; }
[Parameter] public int? MaxTime { get; set; }

We can then initialize the values of the existing _maxLength and _maxTime fields to
the value of the new parameters. As the parameters could be null, we’ll use the null-
coalescing operator, which will use the value of the parameter if it’s not null or 0.
We’ll do this in OnInitialized:

protected override void OnInitialized()
{
 _maxLength = MaxLength ?? 0;
 _maxTime = MaxTime ?? 0;
}

Now we just need to update the SearchPage to pass in the MaxLength and MaxTime
values to the SearchFilter component:

<SearchFilter SearchTerm="@SearchTerm" MaxLength="MaxLength"
MaxTime="MaxTime" />

With that work complete, we can run the app again and check if everything is working
as expected (figure 4.12).

Figure 4.12 The search filter values are now initialized correctly when navigating
directly to the search page with filters.

When loading the search
page with filters directly,
the initial values of the
filter inputs are now set
correctly.

107Summary
As you can see, the search filters are now correctly being set to the values contained in
the query string when loading the page directly.

Summary
 Navigation in Blazor is handled by a client-side router, which is a component.
 By default, the router component resides in the App component at the top of

the app component tree.
 Pages in Blazor are just components that contain a special directive called

@page.
 It is possible to define multiple page directives on a single component and have

it load for more than one route.
 The page directive requires a route to be defined, which the component will

handle.
 Reflection is used by the router to find pages; these are then stored in a table in

memory by the router.
 When a route is requested, the router looks up which component handles the

requested route. If a match for the route isn’t found, then the markup defined
in the router’s NotFound template is displayed.

 Developers can trigger navigation programmatically using the Navigation-
Manager service.

 The NavigationManager class exposes an event called LocationChanged,
which is triggered whenever a navigation occurs. This can be subscribed to by
developers to run custom actions.

 Simple data, such as IDs, can be passed between pages via route parameters.
 Route parameters are strings by default, and route constraints must be used if

the developer wants to work with them as a different type; for example an int.
 Query string parameters can be added to the URL via the GetUriWithQuery-

Parameters or GetUriWithQueryParameter methods available on the
NavigationManager class.

 Page components can access query-string parameters in the URL by defining
parameters that match the name of each query parameter, decorated with the
SupplyParameterFromQuery attribute.

Forms and validation—
Part 1: Fundamentals
This is the first of two chapters covering forms and validation in Blazor. In this first
chapter, we will build a basic form that will allow us to add new trails into the app.
In the next chapter, we’ll add to our work, introducing more advanced features.
Over the course of these chapters, we’ll learn about all the great built-in compo-
nents Blazor gives us, as well as the many extension points we can use to customize
the various elements of our forms.

 By the end of this chapter, we’ll have built our first form with Blazor (figure
5.1). In order to do this, we’ll need to validate the data collected using a library
called Fluent Validation (https://fluentvalidation.net/) and persist it to a new API.

NOTE If you’re following along building the example application, you will
need to complete appendix A before starting this chapter.

This chapter covers
 Creating forms using the EditForm component

 Capturing user input with built-in Blazor
components

 Validating forms
108

https://fluentvalidation.net/

109Forms and validation—Part 1: Fundamentals
With the ability to create trails via a form, we need to make some changes to the archi-
tecture of the application. Specifically, we’ll be introducing an API into the solution
along with a shared class library. The updated architecture of the application is shown
in figure 5.2.

In the Basic Details section, we’ll be using
InputText and InputTextArea components.

In the Difficulty section,
we’ll be using the
InputNumber component.

In the Route Instructions section, we’ll
be generating dynamic form components.

Figure 5.1 The
finished add trail form
we will be building
throughout this chapter

BlazingTrails.Client
(Blazor WebAssembly)

BlazingTrails.Api
(ASP.NET Core WebAPI)

BlazingTrails.Shared
(.NET class library)

The API project is configured to
serve the Blazor WebAssembly
app and is now the startup
project for the solution.

The Shared project is a .NET
class library and will be used
to share code between the
Client and API projects.

The only change for the Blazor project is that
it now references the new Shared project.

SQLite
database

A SQLite database will be used
to store data for the application.

Figure 5.2 The new
architecture for the
Blazing Trails application.
The API project will
now serve the Blazor
application and becomes
the startup project for our
solution. The Shared
project will be used to
share code between the
API and Client projects.
Any data will be stored in
an SQLite database.

110 CHAPTER 5 Forms and validation—Part 1: Fundamentals
You may recognize this project structure from chapter 2, when we covered the tem-
plates available when creating new Blazor applications. This new project structure mir-
rors that of the Blazor WebAssembly ASP.NET Core Hosted template. The steps to add
these new projects and configure them can be found in appendix A.

5.1 Super-charging forms with components
With Blazor, it’s possible to work with HTML forms directly. However, that is not ideal.
While collecting the data entered by the user and handling the form submit event is
easy enough, there is still one major piece of functionality missing: validation. Validation
is the main reason for using the form components provided by Blazor over a standard
HTML form. Figure 5.3 gives an overview of the forms and validation system in Blazor.

Figure 5.3 An overview of the various components and services that make up Blazor’s forms and validation system

EditForm component

InputText

OnSubmitOnValidSubmit OnInvalidSubmit

Submit button

Validator component EditContext

Model

InputNumber

A model is passed to the EditForm. This is a class that
represents the data in the form. The properties on this
model will be bound to individual Input components.

From the model, the EditForm constructs an
EditContext. This keeps track of the state of
the form and coordinates events such as
triggering validation.

When a value on the model is
updated, the Validator component
runs any validation rules attached
to the model; for example, Data
Annotations or Fluent Validation.

Input components are
bound to properties on
the model. When a value
is updated by the user,
the EditContext triggers
any validation. It also
tracks the state of the
property, if it has been
modified, and if its value
is currently valid or invalid.

OnValidSubmit will
execute its handler
only if the model
passes validation.

OnSubmit will
always execute its
handler regardless
of whether the model
is valid or invalid.

OnInvalidSubmit will
execute its handler
only when the
model is invalid.

When the Submit button is clicked, the
EditForm will invoke one or more events,
depending on what handlers have been bound.

1115.1 Super-charging forms with components
The primary component is EditForm—a drop-in replacement for an HTML form
element. Inside this, we add a validator component and various input components
along with a standard HTML Submit button.

 We pass a model into the EditForm, which is an instance of a class that represents
the data we want to collect with the form. Internally, the EditForm component
constructs an EditContext—this is the brain of the form’s system. It keeps track of
all the input components and the state of the model. Whenever a value is updated on
the model, it will trigger validation via a validator component. Blazor ships with a
validator component called DataAnnotationsValidator, which allows the validation
of models using the Data Annotations. Different validator components can be used to
support different validation systems—more on this later.

 The EditForm offers three events for handling form submits. The OnSubmit
event is the same as the standard submit event on an HTML form. It will be invoked
whenever the Submit button is clicked, and the handler is responsible for making sure
the model is valid. The OnValidSubmit event is my personal favorite. This event is
triggered when the Submit button is clicked but with a key difference: the EditForm

will check with the EditContext first to make sure the model is valid. The handler will
be called only when the model is valid. This makes writing the handler much simpler,
as no validation code needs to be written. The final event is OnInvalidSubmit. As
you can probably guess, this works in the opposite way to the OnValidSubmit event.
It will only be invoked when the form is submitted but the model is invalid.

 Now we’ve covered what is going on under the covers, at a high level. It’s time to
start building so we can see everything in action and really understand the nitty-gritty
of it all.

 Before we can start looking at the components, we first need to create our model—
a class that represents the trail data we need to collect from the form. Once we create
our form, we will bind the properties of this class to the various input components
allowing us to capture the data entered.

 We are going to create this class in the new BlazingTrails.Shared project. By
creating it here, we can access it from both our Client and API projects, meaning that
any updates can be done in a single place. We’ll also add our validation here, so both
the server and client will use the same validation rules.

5.1.1 Creating the model

In the shared project, create a new folder called Features, and inside that, add a new
folder called ManageTrails. We are replicating the feature folder structure from our
Blazor app to make working across the different projects easier by extending the
feature folder organization pattern into a feature slice or vertical slice architecture.
Our features will now span across the Web, Shared, and API projects. Inside this new
folder, we will add a new class called TrailDto. This class is shown in the listing 5.1.

112 CHAPTER 5 Forms and validation—Part 1: Fundamentals

 public class TrailDto
 {
 public int Id { get; set; }
 public string Name { get; set; } = "";
 public string Description { get; set; } = "";
 public string Location { get; set; } = "";
 public int TimeInMinutes { get; set; }
 public int Length { get; set; }
 public List<RouteInstruction> Route { get; set; } =
 ➥new List<RouteInstruction>();

 public class RouteInstruction
 {
 public int Stage { get; set; }
 public string Description { get; set; } = "";
 }
 }

There is nothing special about this class right now, but later in the chapter, we will
come back and make some modifications when we add in validation. The only thing
to note is the use of a nested class called RouteInstruction. I like to use this tech-
nique when working with classes that are dependent, because it helps to reinforce the
relationship and makes maintenance easier as everything is in one file.

5.1.2 Basic EditForm configuration

Now that we have our model, we can get on with creating the form itself. Back in the
BlazingTrails.Client project, we will add a new feature folder called ManageTrails, mir-
roring what we did in the Shared project.

 Inside this new folder, we will create a new component and call it _Imports.
razor. Inside this new component, we will delete the contents and add a single line:

@using BlazingTrails.Shared.Features.ManageTrails

By declaring namespaces in a _Import.razor file, they are automatically added to any
files (classes, records, components, etc.) within that folder—or its subfolders.

 Next, we will add another component called AddTrailPage.razor. This page
will contain the form for adding new trails to the application. The following listing
shows the initial code for the component.

@page "/add-trail"

<PageTitle>Add Trail - Blazing Trails</PageTitle>

<nav aria-label="breadcrumb">
 <ol class="breadcrumb">
 <li class="breadcrumb-item">Home

Listing 5.1 TrailDto.cs

Listing 5.2 AddTrailPage.razor

The TrailDto class will be bound to our
form to collect values entered by the user.

RouteInstruction
is a nested class.

1135.1 Super-charging forms with components

d.

 <li class="breadcrumb-item active" aria-current="page">
 ➥Add Trail

</nav>

<h3 class="mt-5 mb-4">Add a trail</h3>

<EditForm Model="_trail" OnValidSubmit="SubmitForm">

 <div class="mt-4 mb-5">
 <div class="row">
 <div class="offset-4 col-8 text-right">
 <button class="btn btn-outline-secondary"
 type="button"
 @onclick="@(() => _trail =
 ➥new TrailDto())">Reset</button>
 <button class="btn btn-primary"
 type="submit">Submit</button>
 </div>
 </div>
 </div>

</EditForm>

@code {
 private TrailDto _trail = new TrailDto();

 private async Task SubmitForm()
 {
 // TODO: Submit data to API
 }
}

Most of the code in the top half of the markup section will look familiar from the
other pages we’ve worked on. In the bottom half is where things are a little more
interesting. We can see the initial setup for our form. As we learned earlier, to use the
EditForm component, we need to give it two things: a model and a method to call
when the form is submitted.

 The model is used internally to understand what validation rules exist and the cur-
rent state of the model (i.e., whether it is valid or invalid). We will go deeper into this
later in the chapter when discussing validation.

 The other setup parameter we must provide is the submit handler. Again, as we
saw earlier, there are three different submit events exposed by the EditForm:

1 OnSubmit

2 OnValidSubmit

3 OnInvalidSubmit

We’re using the OnValidSubmit event, as the handler will be called only after valida-
tion has run and the model is valid.

 There are also a couple of buttons at the end of the form. The Reset button does
exactly what it says on the tin and will reset the form. As all the data recorded by the

The EditForm component is
used to define a Blazor form.
As a minimum, a model and a
submit action must be define

The Reset button clears
the form by creating a
new instance of the
TrailDto class.

Clicking the Submit button
will invoke the OnValidSubmit
event and call the
SubmitForm method.

A new instance of the TrailDto class is created when the component
is initialized and assigned to the EditForm’s Model parameter.
Input components in the form will be bound to its properties.

The SubmitForm method is called
whenever the EditForm’s
OnValidSubmit event is invoked.

114 CHAPTER 5 Forms and validation—Part 1: Fundamentals
form is stored in the model, clearing the form is as simple as creating a new instance
of the form model. The Submit button is no different to the Submit button in a regu-
lar HTML form. The only key thing to remember here is setting the button’s type to
submit.

TIP When working with nonsubmit buttons in Blazor forms, explicitly set
their type attribute to button. If you don’t, they’ll trigger the form to submit,
as the default type for a button is submit.

That is the basic setup of our form completed. However, before we move on and start
adding inputs to our form, we’ll create a new component in the ManageTrails folder
called FormSection.razor.

 You’ll notice in figure 5.4 that there are three sections to the form: Basic Details,
Difficulty, and Route Instructions. This markup is repeated three times for each sec-
tion with only the title and help text changing, which makes it a candidate for a
component.

Figure 5.4 There are three repeated UI elements on the form representing the three
sections. This kind of repetition is often a great time to implement a component.

Repeated
UI elements

1155.1 Super-charging forms with components

Sho

di
I find forms are a prime location for repeated markup that can be refactored into
components. The following listing shows the code for the FormSection component.

<div class="card card-brand mb-4 shadow">
 <div class="card-body">
 <div class="row">
 <div class="col-4">
 <h4>@Title</h4>
 <p class="text-secondary">@HelpText</p>
 </div>
 <div class="col-8">
 @ChildContent
 </div>
 </div>
 </div>
</div>

@code {
 [Parameter, EditorRequired]
 public string Title { get; set; } = default!;
 [Parameter, EditorRequired]
 public string HelpText { get; set; } = default!;
 [Parameter, EditorRequired]
 public RenderFragment ChildContent { get; set; }
 ➥= default!;
}

The FormSection component defines three parameters. The first is the section’s
Title, the second is the HelpText, and the third is ChildContent. By defining this
simple component now, we’ve saved a lot of repeated markup on our form, making
maintenance in the future much easier. We also need to add a SCSS file for the styles
for the FormSection. The following listing shows the code.

.card-brand {
 border-top: 4px solid var(--brand);
}

The .card-brand class is responsible for adding the thick green border to the top of
the card.

5.1.3 Collecting data with input components

We now turn our attention to input components. Out of the box, Blazor ships with
component versions of the standard HTML form input elements. Table 5.1 shows a
list of HTML input elements and their Blazor equivalent.

Listing 5.3 FormSection.razor

Listing 5.4 FormSection.razor.scss

Shows the
section title

Shows the
section
help text

ws the
content

to be
splayed

116 CHAPTER 5 Forms and validation—Part 1: Fundamentals

Except for InputFile, which we’ll cover in the next chapter, to use any of these input
components we just need to bind them to a property on the form model using the
@bind directive.

 Figure 5.5 shows the finished Basic Details section we’ll be building next, which
uses the InputText and InputTextArea components. Listing 5.5 shows the markup
for the section and should be placed inside the opening EditForm tag we added ear-
lier. For each of the Input components, you can see the @bind directive being used
to associate the component with a property on the model. It has a slightly different

Table 5.1 HTML input elements and their Blazor equivalent

HTML input control Blazor input component

<input> or <input type="text" /> <InputText />

<textarea> <InputTextArea />

<input type="number"> <InputNumber />

<select> <InputSelect>

<input type="date"> <InputDate />

<input type="checkbox"> <InputCheckbox />

<input type="radio"> <InputRadio /> and <InputRadioGroup>

<input type="file"> <InputFile />

Figure 5.5 The current state of the Basic Details section of the form

1175.1 Super-charging forms with components
syntax to what we’ve seen before, as when binding to a component, we must specify
the parameter we’re binding to. All the Input components shipped with Blazor
expose a Value parameter, hence @bind-Value.

<FormSection Title="Basic Details"
 HelpText="This information is used to
 ➥identify the trail and can be searched to help hikers
 ➥find it.">
 <div class="row">
 <div class="col-6">
 <div class="form-group">
 <label for="trailName"
 ➥class="font-weight-bold text-secondary">Name</label>
 <InputText @bind-Value="_trail.Name"
 ➥class="form-control" id="trailName" />
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col">
 <div class="form-group">
 <label for="trailDescription"
 ➥class="font-weight-bold text-secondary">Description</label>
 <InputTextArea
 ➥@bind-Value="_trail.Description" rows="6"
 ➥class="form-control" id="trailDescription" />
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col-6">
 <div class="form-group">
 <label for="trailLocation"
 ➥class="font-weight-bold text-secondary">Location</label>
 <InputText @bind-Value="_trail.Location"
 ➥class="form-control" id="trailLocation" />
 </div>
 </div>
 </div>
</FormSection>

By using the FormSection component, we have already saved ourselves a load of
markup, which is great! We’re using the form group CSS classes and markup from
Bootstrap to style each field of the form. The group is made up of a label and input
component. The input components are bound to properties on the model using the
@bind directive—which we used previously in chapter 4 when we built our search fea-
ture. However, we use a slightly different format when binding to input components.
In chapter 4, we used the @bind directive using this format:

@bind="_someValue"

Listing 5.5 The markup for the Basic Details section of the form

The new FormSection
component defines the

section title and help text.

An InputText
component is used to
collect the trail name.

An InputTextArea
component collects the

trail description.

Another InputText
collects the

trail’s location.

https://fluentvalidation.net/
https://fluentvalidation.net/

118 CHAPTER 5 Forms and validation—Part 1: Fundamentals
Now we’re using it like this:

@bind-Value="_someValue"

This is because we are now performing two-way binding on a component rather than
an HTML element. When binding to a component, we must specify the property on
the component we wish to bind to. In the case of Blazor’s input components, that
property is called Value—note the capital V. We’re going to look at the bind directive
in detail when we create our own custom input component in the next chapter, so if
you still have questions, hold that thought.

 Before we move on to the other section, we have another opportunity for a
refactor—I really meant it when I said forms are a prime area for refactoring!

 Looking at the form components we just added, there is a lot of repetition again.
The markup for the layout of each row is repeated with only a single difference
between them, the width—defined with the col and col-* classes. Let’s tidy that up.

 We’ll create a new component called FormFieldSet.razor in the ManageTrails
feature folder, then add the code shown in the following listing.

<div class="row">
 <div class="@Width">
 <div class="form-group">
 @ChildContent
 </div>
 </div>
</div>

@code {
 [Parameter, EditorRequired]
 public RenderFragment ChildContent { get; set; }
 ➥= default!;
 [Parameter]
 public string Width { get; set; }
 ➥= "col";
}

The FormFieldSet component allows us to remove that repeated markup from our
page. The only difference between rows is the length of the row, so by making that
value a parameter, we can pass it in. However, to make life even easier, we can default
its value to col, which is essentially full width. Now we only need to specify a width on
components that aren’t full width. Let’s update the Basic Details section we just added
to use the FormFieldSet component. The following listing shows the updated code.

<FormSection Title="Basic Details"
 HelpText="This information is used to identify the
 ➥trail and can be searched to help hikers find it.">

Listing 5.6 FormFieldSet.razor

Listing 5.7 Basic Details section using FormFieldSet

The label and input
component will be passed

in as child content.
The width of the row
can be passed in, but
there is a default
value provided.

1195.1 Super-charging forms with components
 <FormFieldSet Width="col-6">
 <label for="trailName" class="font-weight-bold text-secondary">Name</
 ➥label>
 <InputText @bind-Value="_trail.Name" class="form-control"
 ➥id="trailName" />
 </FormFieldSet>

 <FormFieldSet>
 <label for="trailDescription"
 ➥class="font-weight-bold text-secondary">Description</label>
 <InputTextArea @bind-Value="_trail.Description" rows="6"
 ➥class="form-control" id="trailDescription" />
 </FormFieldSet>

 <FormFieldSet Width="col-6">
 <label for="trailLocation"
 ➥class="font-weight-bold text-secondary">Location</label>
 <InputText @bind-Value="_trail.Location" class="form-control"
 ➥id="trailLocation" />
 </FormFieldSet>

</FormSection>

I think you’ll agree: the code now looks much cleaner and is much easier to scan
through. If you want, you can run the app and check out the progress so far.

 Let’s add in the next section. This should be really quick with all the great work
we’ve done so far. Figure 5.6 shows the state of the form once the Difficulty section is
complete.

Uses the FormFieldSet component
specifying a width class

Uses the FormFieldSet component
without a custom width specified

Figure 5.6 The current
state of the form with
the Basic Details and
Difficulty sections added

120 CHAPTER 5 Forms and validation—Part 1: Fundamentals
The following listing shows the code for the Difficulty section.

<FormSection Title="Difficulty"
 HelpText="Help other hikers out by
 ➥telling them the length of the trail is how long it
 ➥might take them.">

 <FormFieldSet Width="col-3">
 <label for="trailLength"
 ➥class="font-weight-bold text-secondary">Length (km)</label>
 <InputNumber @bind-Value="_trail.Length"
 ➥class="form-control" id="trailLength" />
 </FormFieldSet>

</FormSection>

By using the components we created earlier, we’ve been able to create this new section
quickly and easily with really clean markup. For now, we only have a single input com-
ponent that collects the length of the trail from the user.

 We now have the first two sections of our form in place, and we have used our first
Blazor form components, InputText, InputTextArea, and InputNumber. All
that’s left for us to do is build the route instructions section.

5.1.4 Creating inputs on demand

At some point, you will need to allow the user to create inputs on demand. In our
case, this is route instructions. A route instruction is a guide, a waypoint that helps hik-
ers find their way around the trail. Depending on the length of the trail, there could
be any number of route instructions—there is no way for us to know up front how
many inputs to give the user. We need to build the form in a way that allows the user to
dynamically add route instructions as they see fit.

 On the surface this can seem a bit daunting, but it’s relatively simple to achieve.
We will use a simple foreach loop over the collection of route instructions we
defined on the form model at the start of the chapter:

public List<RouteInstruction> Route { get; set; } = new
List<RouteInstruction>();

Figure 5.7 shows how the finished code is going to work. When a user clicks the Add
Instruction button, a row will appear with a stage number and a description for them
to fill in.

Listing 5.8 The difficulty section of the add trail form

The section is defined using the
FormSection component.

The FormFieldSet component is used to
contain the form elements in a row.

The InputNumber
component is used to collect
the length of the trail.

https://github.com/blazored/fluentvalidation

1215.1 Super-charging forms with components

Figure 5.7 Clicking Add Instruction adds a new RouteInstruction to the
Route list on the form model. This triggers a re-render of the UI, which outputs
the dynamically created InputText component as well as a button to remove
the instruction from the list if it was added by mistake or is no longer required.

The following listing shows the code for this section of the form.

<FormSection Title="Route Instructions"
 HelpText="Route instructions are a guide for the trail.
 ➥This helps hikers new to the trail stay on track.">
 @{ var i = 0; }
 @foreach (var routeInstruction in _trail.Route)
 {
 i++;
 routeInstruction.Stage = i;

 <div class="row">
 <div class="col-2">
 <div class="form-group">
 <label class="font-weight-bold text-secondary">
 ➥Stage</label>
 <p>@routeInstruction.Stage</p>
 </div>
 </div>
 <div class="col">
 <div class="form-group">
 <label for="routeInstructionDescription"
 ➥class="font-weight-bold text-secondary">Description</
 ➥label>
 <InputText
 ➥@bind-Value="routeInstruction.Description"

Listing 5.9 The route instructions section of the add trail form

Adding the new instruction triggers the foreach statement and
dynamically creates an InputText component and Remove button.

The foreach loop is used
to iterate over the route
instructions on the trail.

The i variable keeps track of the number of route instructions
and is used to set the stage property on each RouteInstruction.
The stage is used to order the route instructions.

The stage
number is output

122 CHAPTER 5 Forms and validation—Part 1: Fundamentals
 ➥class="form-control"
 ➥id="routeInstructionDescription" />
 </div>
 </div>
 <div class="col-1 d-flex mt-3">
 <button
 ➥@onclick="@(() => _trail.Route.Remove(routeInstruction))"
 ➥class="btn btn-link" type="button">
 <svg width="1em" height="1em" viewBox="0 0 16 16"
 ➥class="bi bi-x-circle-fill text-danger"
 ➥ fill="currentColor"
 ➥xmlns="http://www.w3.org/2000/svg">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0
 ➥8a8 8 0 0 1 16 0zM5.354 4.646a.5.5 0 1
 ➥0-.708.708L7.293 8l-2.647 2.646a.5.5
 ➥0 0 0 .708.708L8 8.707l2.646 2.647a.5.5 0 0 0
 ➥.708-.708L8.707 8l2.647-2.646a.5.5 0 0
 ➥0-.708-.708L8 7.293 5.354 4.646z" />
 </svg>
 </button>
 </div>

 </div>
 }

 <div class="row">
 <div class="col">
 <button class="btn btn-outline-primary"
 ➥type="button"
 ➥@onclick="@(() => _trail.Route.Add(
 ➥new TrailDto.RouteInstruction()))">Add Instruction
 ➥</button>
 </div>
 </div>

</FormSection>

There are two key parts to the code in listing 5.9, the foreach loop and the Add
Instruction button at the end of the FormSection. The Add Instruction button is the
key to kicking off the process. When clicked, it will add a new RouteInstruction
instance to the Route list. This changes the state of the Route property, triggering a
re-render. As there is now an item in the list, the code inside the foreach block is exe-
cuted and the relevant form inputs will be output on the UI.

 From this point, the user can keep clicking the Add Instruction button to create as
many instructions as they wish to define for the trail. If at any point they add one too
many, or they want to remove an instruction for whatever reason, they can click the
Remove button at the end of the description input. This will remove that specific
entry from the Route list, and the stage numbers will automatically recalculate to
keep the instructions in sequence.

 Our form is now looking rather good! We can record all the various pieces of infor-
mation about a trail and create as many route instructions as necessary. The next step
is to add in validation. After all, our form won’t be much good if we can’t validate what
has been entered!

The description for
the route instruction
instance is bound to

an InputText.

Clicking this button will
remove a route

instruction from the list.
Blazor will automatically

re-render the UI and
remove the relevant form

controls for that entry.

Clicking the Add Instruction button will add a new route
instruction to the list. This triggers Blazor to iterate the
collection and output the contents of the foreach loop,
enabling the user to enter the details of that instruction.

1235.2 Validating the model
5.2 Validating the model
Validation is the most important part of building forms. Without validation, the sys-
tem can end up containing all kinds of rubbish data. Out of the box, Blazor includes a
few components to help us do this. They are

 DataAnnotationsValidator

 ValidationSummary

 ValidationMessage

The DataAnnotationsValidator component allows Blazor forms to work with the
Data Annotations validation system, which is the default for ASP.NET Core applica-
tions. This system works by decorating properties on a model with attributes that
define the validation rules. For example, to make a text property required, we would
do the following:

[Required]
public string Name { get; set;}

The ValidationSummary component displays all validation messages for a model.
This can be useful when you want to have all the validation messages for a form
grouped together in one place.

 Finally, the ValidationMessage component displays a validation message for a
specific property on the model. This allows a validation message to be displayed
directly under, or next to, an input component, making it easy for the user to see
where the problem is.

As with most things in Blazor, there is no restriction on which validation system you
can use. So, if Data Annotations isn’t your thing, you can easily swap to a different val-
idation system. Personally, I like to use Fluent Validation (https://fluentvalidation
.net/). I generally prefer the fluent syntax for defining validation rules. I also find cre-
ating more complex validation logic is much simpler with Fluent Validation than with
Data Annotations. Therefore, we’ll be using Fluent Validation for Blazing Trails.

5.2.1 Configuring validation rules with Fluent Validation

Before we start adding validation components to our form, we’re going to set up our
API and Shared projects to use Fluent Validation. We’ll start by setting up our API.
Then we’ll move on to the Shared project and configure the validation rules on our
model, TrailDto.

 First, we need to install a NuGet package in the API project. Add the following
package reference to the project file (alternatively, the package can be added through
the Manage NuGet package GUI):

<PackageReference Include="FluentValidation.AspNetCore" Version="10.3.3" />

Once this is done, update the call to builder.Services.AddControllers to the
following in Program.cs:

builder.Services.AddControllers().AddFluentValidation(fv =>
fv.RegisterValidatorsFromAssembly(Assembly.Load("BlazingTrails.Shared")));

https://fluentvalidation.net/
https://fluentvalidation.net/
https://fluentvalidation.net/

124 CHAPTER 5 Forms and validation—Part 1: Fundamentals
This will add the necessary services for Fluent Validation to run. To save us manually
registering every validator for our application, we’ve used the RegisterValidators-
FromAssembly configuration option. This lets us specify an assembly to scan that con-
tains the validators for our application. The library will then register them for us. That’s
all we need to do on the API project. Now let’s turn our attention to the Shared project.

 As with the API project, we need to install the Fluent Validation NuGet package.
Add the following package reference into the .csproj for the Shared project:

<PackageReference Include="FluentValidation" Version="10.3.3" />

With the package installed, we can open the TrailDto class and add a using state-
ment to it:

using FluentValidation;

To set up the validation rules, we need to define a validator class for our TrailDto.
Some people prefer to do this in a separate file, but I prefer to keep them together, as
it makes maintenance easier. After the TrailDto class ends, add the class shown in
the following listing.

public class TrailValidator :
➥AbstractValidator<TrailDto>
{
 public TrailValidator()
 {
 RuleFor(x => x.Name).NotEmpty()
➥.WithMessage("Please enter a name");
 RuleFor(x => x.Description).NotEmpty()
➥.WithMessage("Please enter a description");
 RuleFor(x => x.Location).NotEmpty()
➥.WithMessage("Please enter a location");
 RuleFor(x => x.Length).GreaterThan(0)
➥.WithMessage("Please enter a length");
 RuleFor(x => x.Route).NotEmpty()
➥.WithMessage("Please add a route instruction");
 }
}

Defining a validator class means inheriting from the AbstractValidator<T> base
class. The type parameter T is the class to be validated—in our case, that’s TrailDto.
We define the validation rules inside the constructor using the RuleFor method. This
takes a lambda expression defining which property is to be validated. We then chain
methods together to state what makes the property valid and what error message to
show if it’s not. Let’s take the Name property rule as an example:

RuleFor(x => x.Name).NotEmpty().WithMessage("Please enter a name");

Listing 5.10 TrailValidator class inside the TrailDto.cs file

Validation classes must inherit from
the AbstractValidator<T> class, T
being the class to be validated.

Validation rules are defined in the
constructor of the validation class.

Validation rules are defined
using a fluent syntax, hence the
name. Each rule defines the
property it’s for, the criteria,
and the error message to show
if the criteria isn’t met.

https://github.com/jbogard/MediatR
https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/ardalis/ApiEndpoints

1255.2 Validating the model
This rule states that the Name property can’t be empty, and the NotEmpty() method
covers several scenarios. As Name is a string, it will check that it’s not null, an empty
string, or whitespace. If any of these checks fail, the error message specified in the
WithMessage() method will be returned.

 The rules we’ve defined will make sure that the TrailDto is valid, but we also
need to do the same for the RouteInstruction nested class. The validator class for
this is shown in the following listing, which can be added below the TrailValidator
class in the same file.

public class RouteInstructionValidator :
➥AbstractValidator<TrailDto.RouteInstruction>
{
 public RouteInstructionValidator()
 {
 RuleFor(x => x.Stage).NotEmpty()
 ➥.WithMessage("Please enter a stage");
 RuleFor(x => x.Description).NotEmpty()
 ➥.WithMessage("Please enter a description");
 }
}

For the RouteInstructionValidator, we’ve defined a couple of rules to ensure
both Stage and Description have a value. Other than that, everything is the same
as the previous validator.

 With the RouteInstruction validator in place, we have one last piece of configu-
ration to do. We need to wire up the RouteInstructionValidator in the Trail-
Validator. At the end of the TrailValidator constructor, we’ll add the following
line:

RuleForEach(x => x.Route).SetValidator(new RouteInstructionValidator());

This tells the TrailValidator that for each entry in the Route collection, it should
use the rules defined in the RouteInstructionValidator to validate the model.
This will ensure that we can validate and display error messages for each dynamically
created route instruction on the form.

5.2.2 Configuring Blazor to use Fluent Validation

Now we have the validation rules set up for the TrailDto, we need to tell Blazor how
to understand and process them. To do this, we will install a package into the Client
project, which is going to do all the heavy lifting for us. It’s called Blazored.Fluent-
Validation (https://github.com/blazored/fluentvalidation).

 This package is one of my open source projects. It contains one component called
FluentValidationsValidator, which, when included in an EditForm component,

Listing 5.11 RouteInstructionValidator class inside TrailDto.cs

The validator inherits from
AbstractValidator<T> as
before, but this time T is the
RouteInstruction class.

Validation rules are defined
in the constructor as before.

These are validation rules for
the RouteInstruction class.

126 CHAPTER 5 Forms and validation—Part 1: Fundamentals
will allow the form model to be validated according to any Fluent Validation rules. To
set up the Client project, we’re going to add a package reference to the csproj file.

<PackageReference Include="Blazored.FluentValidation" Version="2.0.1" />

Then we will add the following using statement to the _Imports.razor at the root
of the project.

@using Blazored.FluentValidation

We are now ready to add the validation components to our form. The first thing we’ll
do is tell the EditForm component that we want the model to be validated with Flu-
ent Validation. To do this, we add the FluentValidationsValidator component
somewhere between the opening and closing tags of the EditForm. I prefer to add it
right at the top, directly under the opening EditForm tag.

<EditForm Model="_trail" OnValidSubmit="SubmitForm">
 <FluentValidationValidator />

We now need to add a ValidationMessage component under each of the existing
inputs on the form. The following listing shows the updated Basic Details section.

<FormFieldSet Width="col-6">
 <label for="trailName"
 ➥class="font-weight-bold text-secondary">Name</label>
 <InputText @bind-Value="_trail.Name"
 ➥class="form-control" id="trailName" />
 <ValidationMessage For="@(() => _trail.Name)" />
</FormFieldSet>

<FormFieldSet>
 <label for="trailDescription"
 ➥class="font-weight-bold text-secondary">Description</label>
 <InputTextArea @bind-Value="_trail.Description" rows="6"
 ➥class="form-control" id="trailDescription" />
 <ValidationMessage
 ➥For="@(() => _trail.Description)" />
</FormFieldSet>

<FormFieldSet Width="col-6">
 <label for="trailLocation"
 ➥class="font-weight-bold text-secondary">Location</label>
 <InputText @bind-Value="_trail.Location"
 ➥class="form-control" id="trailLocation" />
 <ValidationMessage
 ➥For="@(() => _trail.Location)" />

</FormFieldSet>

Listing 5.12 Basic Details section with ValidationFor components

Each input
has a
corresponding
Validation-
Message
component.

1275.2 Validating the model
The ValidationMessage component requires a single parameter to be set, called
For. The For parameter takes an expression specifying which property on the model
it should show validation messages for.

 Now that we have some validation components in place, we can run the applica-
tion and see what happens. Figure 5.8 shows the Basic Details section of the form and
the result of clicking the Submit button without filling in any fields.

Figure 5.8 Validation messages are shown under each of the input components.

As you can see, the validation messages we specified on the TrailValidator class
are now appearing in the UI. But there is more going on here than meets the eye. If
we use the browser developer tools to inspect the HTML of the page, we can see
another effect of validation (figure 5.9).

Figure 5.9 HTML for the FormFieldSet containing the name of the trail. An invalid CSS
class has been applied to the input element.

The HTML is of the FormFieldSet containing the trail name and shows that the
input element has a CSS class called invalid applied to it. This was applied because
of Blazor’s validation system. To help toward accessibility, an aria attribute was also
applied, aria-invalid.

 As we learned early in the chapter, the EditContext keeps track of the state of
the form. It knows the state of each property on the model at any given time. When

Validation messages are
shown below each input.

An invalid class has been
applied to the input.

128 CHAPTER 5 Forms and validation—Part 1: Fundamentals
validation is executed, the input component bound to a property is updated with CSS
classes that represent that property’s state. Those classes are:

 valid

 invalid

 modified

We can use these classes to style inputs based on their validation state, and that’s
exactly what we’re going to do now.

I suggest putting validation styling in a global CSS file, as it’s almost always the
same across an application. This avoids a lot of repetition compared to using scoped
CSS. In the app.css file, in the wwwroot > css folder, we will add the styles shown in the
following listing to the top of the file.

.validation-message {
 color: red;
}

input.invalid,
textarea.invalid,
select.invalid {
 border-color: red;
}

input.valid.modified,
text.valid.modified,
select.valid.modified {
 border-color: green;
}

As we saw previously, the validation message component renders the validation mes-
sage we specified in our validator class. It outputs the message in a div with a class
of validation-message. The first CSS class specifies that any text shown in an ele-
ment with that class will have red text.

 The next two classes deal with the three state classes that are applied to input com-
ponents. The first makes sure that any form element with a class of invalid has a red
border. The second adds a green border to any form element that has both the modi-
fied and valid classes. We specify both classes here, as when the form is first ren-
dered, all input components start with the valid class applied. If we didn’t do this, all
components would have a green border when the form first loads.

 If we run the application now and submit the form without entering any values, we
should see our new styles in action. We can then enter a valid value and see the valid
styling applied (figure 5.10).

 Valid fields are now styled with a border using the color specified in the valid CSS
class. When a field is invalid, it’s styled with a border using the color specified in the

Listing 5.13 Validation styles

Text for the validation-message class
will be red. This class is used by the
validation message component.

Any input, textarea, or select
element with a class of invalid
will have a red border.

Any input, textarea, or select element
with a class of valid AND modified
will have a border of green.

1295.2 Validating the model

age

invalid CSS class. Invalid fields also display any validation messages underneath the
input. This now makes it much easier to see the state of the form at a glance.

 All that is left for us to do before we tackle sending our form data to the server is
add in the ValidationMessage components to the remaining sections of the form.
The following listing shows the updated Difficulty section.

<FormFieldSet Width="col-3">
 <label for="trailLength"
 ➥class="font-weight-bold text-secondary">Length (km)</label>
 <InputNumber @bind-Value="_trail.Length" class="form-control"
 ➥id="trailLength" />
 <ValidationMessage For="@(() => _trail.Length)" />
</FormFieldSet>

Just as we did with the Basic Details section, we’ve added in a ValidationMessage
component and specified that it should show validation messages for the Length
property. The last section is the Route Instructions shown in the following listing.

@{ var i = 0; }
@foreach (var routeInstruction in _trail.Route)
{
 // Code omitted for brevity
 <div class="col">
 <div class="form-group">
 <label for="routeInstructionDescription"
 ➥class="font-weight-bold text-secondary">Description</label>
 <InputText @bind-Value="routeInstruction.Description"
 ➥class="form-control" id="routeInstructionDescription" />

Listing 5.14 Updated Difficulty section with validation

Listing 5.15 Updated Route Instructions section with validation

Valid inputs are styled using
the Valid style. This adds a
border with the specified color

Invalid inputs are styled with
the Invalid style and show any
validation messages.

Figure 5.10 Valid fields are styled using the valid class. They receive a border with the color specified
in the CSS class. Invalid fields are styled with a border using the color specified in the invalid CSS class.
They also show any validation messages underneath the input.

This is the ValidationMess
component for the Length
property.

130 CHAPTER 5 Forms and validation—Part 1: Fundamentals
 <ValidationMessage
 ➥For="@(() => routeInstruction.Description)" />
 </div>
 </div>
 // Code omitted for brevity
}
<div class="row">
 <div class="col">
 <button class="btn btn-outline-primary" type="button"
 ➥@onclick="@(() => _trail.Route.Add(new
 ➥ TrailDto.RouteInstruction()))">
 ➥Add Instruction</button>
 <ValidationMessage
 ➥For="@(() => _trail.Route)" />
 </div>
</div>

There is a little more going on in the Route Instructions section than the other two. In
this section, we have two sets of ValidationMessage components. The first is inside
the foreach loop and is bound using the iteration variable routeInstruction,
rather than binding via the model as we’ve done previously. The second is outside the
foreach and is bound to the Route collection. This is so if the user fails to add any
route instructions, we can show a validation message stating that at least one instruc-
tion must be added.

 With our form built and validation in place, the last thing we must do is submit our
form data to the server and store it. We will tackle this in the next section.

5.3 Submitting data to the server
We have a form that allows us to capture data from the user, and we have validation in
place to stop invalid data getting into the system. The last thing we need to do is to
persist that data to our new API. To do this, we’ll employ a couple of libraries that I’m
a big fan of.

 The first is called MediatR (https://github.com/jbogard/MediatR) by Jimmy
Bogard. MediatR is an in-process messaging library that implements the mediator pat-
tern (https://en.wikipedia.org/wiki/Mediator_pattern). Essentially, requests are con-
structed and passed to the mediator, which then passes them to a handler. MediatR
uses dependency injection to connect requests with handlers. This makes things very
flexible and easy to test. The main advantage of using MediatR is the ability to have
loose coupling between components and server interactions.

 The second is called ApiEndpoints (https://github.com/ardalis/ApiEndpoints) by
Steve Smith (aka Ardalis). I love this project, as it solves an issue I’ve had for an awfully
long time: controllers. Whether it’s MVC or API controllers, they’ve always felt wrong.
Steve Smith sums it up perfectly in the readme of the ApiEndpoints repo:

The ValidationMessage is used as before,
except it is bound to the current route

instruction in the foreach loop.

Each route instruction in the collection is validated
independently. But we also have a rule to make sure

there is at least one route instruction in the
collection. This ValidationMessage component will
display the error message if that rule is not met.

https://github.com/jbogard/MediatR
https://en.wikipedia.org/wiki/Mediator_pattern
https://github.com/ardalis/ApiEndpoints

1315.3 Submitting data to the server
MVC Controllers are essentially an antipattern. They’re dinosaurs. They are collections of
methods that never call one another and rarely operate on the same state. They’re not
cohesive. They tend to become bloated and to grow out of control. Their private methods, if
any, are usually only called by a single public method.

—Steve Smith, creator of ApiEndpoints

ApiEndpoints solves this by allowing us to define an endpoint as a class with a single
method to handle the incoming request. This allows us to avoid all the issues that sur-
round controllers and build clear and easy-to-maintain endpoints in our APIs. The
overview of how we will interact with the server is shown in figure 5.11.

Figure 5.11 Overview of how the client will interact with the server using the
MediatR and ApiEndpoints libraries

Request

MediatR

Handler

API endpoint

Client

Server

Response

A request is created
by the calling code.

The request is
dispatched to MediatR,
where the appropriate
handler is found to deal
with the request.

The handler makes the
call to the API and awaits
the response.

The API endpoint receives
the request and processes it.
It then returns the response.

Depending on the request,
data is either read from
or written to the database.

The response is returned
to the calling code.

132 CHAPTER 5 Forms and validation—Part 1: Fundamentals
Taking our form as the example, we will create a request to post the data to the API
and pass this request to MediatR. MediatR will route our request to a handler, which
will process the request and make the API call. On the server, an API endpoint will
receive the request and process it. In this case, it will save the data into a database, and
if there are no issues, it will return a success response—otherwise an error response
will be returned. This response will travel back until it reaches the calling code.

 We’re going to start at the Blazor end and set up MediatR; then we’ll create our
first request and handler. Finally, we’ll move to the server and set up the endpoint.

5.3.1 Adding MediatR to the Blazor project

To add MediatR to Blazor, we need to add two NuGet packages to the csproj file called
MediatR and MediatR.Extensions.Microsoft.DependencyInjection.

<PackageReference Include="MediatR" Version="9.0.0" />
<PackageReference Include="MediatR.Extensions.Microsoft.DependencyInjection"

Version="9.0.0" />

Then we need to add MediatR to the service collection. To do this, we add a line into
the Program.Main method in the Program.cs file.

builder.Services.AddMediatR(typeof(Program).Assembly);

This line adds MediatR to the service collection, so we can inject it into our compo-
nents and services. It also tells MediatR to scan the current assembly for request han-
dlers. The final piece of configuration we’re going to do is to add a using statement
for MediatR in the root _Imports.razor file.

@using MediatR;

We are now all set to start creating requests and handlers to use with MediatR!

5.3.2 Creating a request and handler to post the form data to the API

We are going to start by creating a request that will contain the data collected by our
form. Once this is done, we can create a handler for that request; this will be responsi-
ble for posting the data up to the API.

 All of our requests are going to live in the BlazingTrails.Shared project—this will
allow us to use them in both the API and Client projects. To start, we need to add a
reference to MediatR in the Shared project.

<PackageReference Include="MediatR" Version="9.0.0" />

Now we need to create a new class in the Features > ManageTrails folder called
AddTrailRequest. The following listing shows the contents of the file.

1335.3 Submitting data to the server

public record AddTrailRequest(TrailDto Trail) :
➥IRequest<AddTrailRequest.Response>
{
 public const string RouteTemplate = "/api/trails";

 public record Response(int TrailId);
}

public class AddTrailRequestValidator :
➥AbstractValidator<AddTrailRequest>
{
 public AddTrailRequestValidator()
 {
 RuleFor(x => x.Trail)
 ➥.SetValidator(new TrailValidator());
 }
}

The first thing to note is that the AddTrailRequest is not a C# class, but a C#
record. Records are a new type introduced in C# 9 and are considered the preferable
option for DTOs, which is essentially what our request is.

The reason for this is that records can be immutable, meaning once the values of
its properties have been set, they can’t be changed. If they need to be changed, then a
new copy is made with the updated values.

 Another advantage of using records is that they use value-based equality. Two records
are considered equal when all the values of their properties match.

 But to me, probably the biggest benefit is how succinct they are. Take the defini-
tion of the AddTrailRequest:

public record AddTrailRequest(TrailDto Trail)

This code is syntactic sugar for the following definition:

public record AddTrailRequest
{
 public TrailDto Trail { get; init; }
}

I love being able to skip writing all those extra characters! It makes defining requests
with large amounts of properties so much more pleasant. You’ll have noticed that we
also define the response for the request as a nested record.

Listing 5.16 Contents of the AddTrailRequest.cs file

AddTrailRequest is defined as a C# record as opposed to a class.
Records are considered preferable for data transfer objects due to
their immutability and value type qualities. The record implements

the IRequest<T> interface that is used by MediatR when locating a
handler. T defines the response type of the request.

This constant defines the
address of the API
endpoint for the request.

This nested C# record defines the
response data for the request.

A validator for the request. This will
be executed by the API to make
sure the request data is valid.

Specifies the TrailValidator as the validator
for the Trail property. This allows us to reuse

the validation rules we created earlier.

134 CHAPTER 5 Forms and validation—Part 1: Fundamentals

u

p

 Moving on from records, AddTrailRequest defines a route template as a con-
stant. This will be used later when we create the API endpoint. The benefit is that if
we want to change the endpoint’s address further down the road, we can do it in a
single place.

 Finally, we have a validator for the request. This validator is going to be executed by
the server when receiving the request to make sure its contents are valid. However, we
don’t want to duplicate all the great validation rules we created earlier, so as we’re using
the TrailDto type in the request, we can assign the validator we’ve already created.

 Now that we have a request, we need to create a handler for it. We’re going to create
this in the Client project in the Features > ManageTrails folder. Create a new C# class
called AddTrailHandler.cs. The following listing shows the code for the handler.

public class AddTrailHandler :
➥IRequestHandler<AddTrailRequest,
➥AddTrailRequest.Response>
{
 private readonly HttpClient _httpClient;

 public AddTrailHandler(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<AddTrailRequest.Response>
 ➥Handle(AddTrailRequest request,
 ➥CancellationToken cancellationToken)
 {
 var response = await _httpClient
 ➥.PostAsJsonAsync(AddTrailRequest.RouteTemplate,
 ➥request, cancellationToken);

 if (response.IsSuccessStatusCode)
 {
 var trailId = await response.Content
 ➥.ReadFromJsonAsync<int>(cancellationToken:
 ➥cancellationToken);
 return new AddTrailRequest.Response(trailId);
 }
 else
 {
 return new AddTrailRequest.Response(-1);
 }
 }
}

Request handlers contain only a single method called Handle. This method is a
requirement of the IRequestHandler<TRequest, TResponse> interface. As part
of implementing this interface, we need to define the type of TRequest and

Listing 5.17 AddTrailHandler.cs

Request handlers implement the IRequestHandler
<TRequest, TResponse> interface. TRequest is the
type of request the handler handles. TResponse is
the type of the response the handler will return.

An HttpClient is injected
and stored in a field to be
used to make API calls.

The Handler method is specified
by the IRequestHandler interface
and is the method called to
handle the request by MediatR.

The HttpClient is used to call the
API using the route template we
defined on the request.

If the request was
successful, then

the trailId is read
from the response

and returned
sing the AddTrail-
Request.Response

record we
reviously defined.

If the request failed, a response is returned containing a negative
number. This will be used in the calling code to identify a problem.

1355.3 Submitting data to the server
TResponse. TRequest is the type of request that the handler should process. For us,
that type is AddTrailRequest. TResponse is the type that the handler will return to
the caller; for us, that is AddTrailRequest.Response.

 In the handle method, we use an HttpClient, which is injected via the construc-
tor, to make the API call. You’ll notice we’re using the route template we defined on
the request rather than hardcoding the address.

 When the response is returned, we check to see if the request was successful. If it
was, then we extract the trailId from the response and return a new AddTrail-
Request.Response containing the ID. If it wasn’t successful, we still return the
response but with a negative ID, which we can use to show error messages on the UI.

 To round out our work on the client, we need to hook up our request to the form’s
submit event. In the AddTrailPage.razor component, we are going to inject
MediatR at the top using the inject directive:

@inject IMediator Mediator

With that in place, we will update the code block of the component. The following list-
ing shows the changes.

private TrailDto _trail = new TrailDto();
private bool _submitSuccessful;
private string? _errorMessage;

private async Task SubmitForm()
{
 var response = await Mediator.Send(
 ➥new AddTrailRequest(_trail));
 if (response.TrailId == -1)
 {
 _errorMessage = "There was a problem saving your trail.";
 _submitSuccessful = false;
 return;
 }

 _trail = new TrailDto();
 _errorMessage = null;
 _submitSuccessful = true;
}

First, we’ve added two new fields that are going to be used to show errors to the user.
We’ll implement the UI for this in a second.

 Inside the SubmitForm method, we’re using the Mediator service supplied by
MediatR to send the AddTrailRequest—we then await the response. If it has a nega-
tive TrailId, we assign an error message and set _submitSuccessful to false.
Otherwise, we create a new TrailDto instance, which clears the form ready for
another trail to be added.

Listing 5.18 Updated code block for AddTrailPage.razor

This is a new field to track if the
form was submitted successfully.

This is a new field to store an
error message if something went
wrong submitting the form.

MediatR is used to dispatch the
AddTrailRequest and await the response.

Check for a negative TrailId,
which indicates an error.

A new TrailDto instance is
created, which resets the form
ready for a new trail to be input.

136 CHAPTER 5 Forms and validation—Part 1: Fundamentals

 The final update is to add a small piece of UI to show if the form submitted suc-
cessfully or not. We’re going to add the code shown in the following listing directly
above the EditForm component.

@if (_submitSuccessful)
{
 <div class="alert alert-success" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
 ➥fill="currentColor" class="bi bi-check-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
➥0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0
➥0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0
➥0-.01-1.05z" />
 </svg>
 Your trail has been submitted successfully!
 </div>
}
else if (_errorMessage is not null)
{
 <div class="alert alert-danger" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
➥fill="currentColor" class="bi bi-x-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
➥0zM5.354 4.646a.5.5 0 1 0-.708.708L7.293 8l-2.647 2.646a.5.5 0 0 0
➥.708.708L8 8.707l2.646 2.647a.5.5 0 0 0 .708-.708L8.707 8l2.647-2.646a.5.5
➥0 0 0-.708-.708L8 7.293 5.354 4.646z" />
 </svg>
 @_errorMessage
 </div>
}

The markup we’ve added will check the _submitSuccessful field, and if it’s true, it
will display a success alert to the user telling them the form was submitted successfully.
However, if it’s false and the _errorMessage field contains some text, then an error
alert is shown instead, along with the error message.

 That is everything done on the client side. The last task we have is to implement
the endpoint, which will receive the request and save the trail into a database.

5.3.3 Setting up the endpoint

In the server project, we first need to set up ApiEndpoints. This is straightforward; we
just need to add the following NuGet package reference to the server’s csproj file:

<PackageReference Include="Ardalis.ApiEndpoints" Version="3.1.0" />

There is no further configuration required, as the library provides base classes for us
to use along with some code analyzers. For the database, we’ll be using SQLite with
Entity Framework Core. The instructions for the installation and setup of the database
can be found in appendix A.

Listing 5.19 Markup to display success or failure messages

If submitSuccessful is true,
we show a success alert.

However, if submitSuccessful is false
and we have an errorMessage, we
display an error alert.

1375.3 Submitting data to the server

d
.

w
to
 We will continue with our feature folder’s theme in the server, so next we create a
folder called Features in the root with a subfolder called ManageTrails. Inside that, we
will create a new class called AddTrailEndpoint.cs with the code shown in the fol-
lowing listing.

public class AddTrailEndpoint : BaseAsyncEndpoint
➥.WithRequest<AddTrailRequest>
➥.WithResponse<int>
{
 private readonly BlazingTrailsContext _database;

 public AddTrailEndpoint(BlazingTrailsContext database)
 {
 _database = database;
 }

 [HttpPost(AddTrailRequest.RouteTemplate)]
 public override async Task<ActionResult<int>>
 ➥HandleAsync(AddTrailRequest request,
 ➥CancellationToken cancellationToken = default)
 {
 var trail = new Trail
 {
 Name = request.Trail.Name,
 Description = request.Trail.Description,
 Location = request.Trail.Location,
 TimeInMinutes = request.Trail.TimeInMinutes,
 Length = request.Trail.Length
 };

 await _database.Trails.AddAsync(trail, cancellationToken);

 var routeInstructions = request.Trail.Route
 ➥.Select(x => new RouteInstruction
 {
 Stage = x.Stage,
 Description = x.Description,
 Trail = trail
 });

 await _database.RouteInstructions
 ➥.AddRangeAsync(routeInstructions, cancellationToken);
 await _database.SaveChangesAsync(cancellationToken);

 return Ok(trail.Id);
 }
}

To define an API endpoint, we must inherit from the BaseAsyncEndpoint class.
This class requires us to define a request and response type. We do this using a fluent

Listing 5.20 AddTrailEndpoints.cs

BaseAsyncEndpoint is
provided by the
ApiEndpoints library.
We use a fluent API to
define the request and
the response the
endpoint will handle.

The route for the endpoint is define
using the template on the Request

BaseAsyncEndpoint
provides a single abstract
method we must
override. This method
will be called to handle
the incoming request.

A new Trail
instance is

created using
the data in the
request. This is
the entity that
ill be persisted
 the database.

A collection of RouteInstructions
is created from the incoming
request. These will be persisted
to the database.

After the database entities have been created and
populated, they are added to the DbContext, and

SaveChanges is called to persist them to the database.The new trail ID is sent
back as the response.

138 CHAPTER 5 Forms and validation—Part 1: Fundamentals
API, which allows us to specify the request type and the response type. These values
are used when overriding the HandleAsync method, which we’ll discuss in a second.

 As we’re going to be writing to the database, we need to inject an instance of the
BlazingTrailsContext, which is done in the constructor. We also need to define
the route the endpoint will respond to. Once again, this is done using the Route-
Template defined on the AddTrailRequest.

 The HandleAsync method is where all the work is done. This method takes the
request type we specified when inheriting the BaseAsyncEndpoint class and returns
the response type. Inside the method, we create instances of the database entities
Trail and RouteInstruction using the incoming request. These entities are then
added to their relative DbSets before SaveChangesAsync is called to write them to
the database. Finally, the new trail ID is returned using the Ok() helper method,
which returns a 200 http response code, indicating a success.

 At this point, we are all done and we can run the application and test everything
out. Figure 5.12 shows the result of a trail being successfully added.

Figure 5.12 The finished form showing a success message after adding a new trail

139Summary
If all has gone well, you should see your new trail appear in the SQLite database
(figure 5.13).

Figure 5.13 The trail added via the form in the SQLite database

At this point, the rest of the application is still using the hardcoded data, so we can’t
see the new trail in the application yet. Also, you may have spotted that we’re missing
a couple of pieces of information: the TimeInMinutes and the Image. We will deal
with these issues in the next chapter.

Summary
 The primary advantage of using Blazor form components over traditional

HTML forms is validation.
 The EditForm component is a drop-in replacement for the HTML form ele-

ment.
 Blazor ships with component versions of all the standard HTML input controls.
 The EditForm requires a model that represents the data the form will collect,

as well as a handler for one of the submit events it exposes (OnSubmit, On-
ValidSubmit, OnInvalidSubmit).

 Internally, the EditForm will construct an EditContext, which is the brain of
the form and keeps track of the validation state of the model, as well as coordi-
nates validation events.

 To use Blazor’s input components, they must be bound to a property on the
model passed to the EditContext. This is done using the @bind directive.

 Blazor ships with a validation component called DataAnnotations-

Validator, which enables the Data Annotations validation system to be used
with models.

 The validation system in Blazor is flexible and extendable, and other validation
systems can easily be added by swapping out the validator component.

Trail data stored
in the trails table

Forms and validation—
Part 2: Beyond the basics
In this chapter, we will build on the work we did in chapter 5 by extending our Trail
form with some more advanced features. Right now, our form uses some basic styl-
ing for validation. However, we’re using the Bootstrap CSS framework, which con-
tains much fancier validation styling. Wouldn’t it be great if we could take
advantage of those classes instead of having to write our own? Well, the good news
is we can! And we’re going to learn how in the first section of this chapter.

 Blazing Trails shows the rough time it takes for a hiker to walk a trail. This is a
really helpful feature for users, but currently our form doesn’t allow this value to be
entered. This is because we store that value as the total time in minutes, even
though we display it as hours and minutes. We want the users to be able to enter the
time in hours and minutes; they shouldn’t have to work out total time in minutes

This chapter covers
 Customizing validation CSS class names

 Building custom input components

 Uploading files

 Designing forms to handle adding and editing
140

1416.1 Customizing validation CSS classes

and
just because that’s how the system stores the value. This is a perfect opportunity to
implement a custom form component.

 Once we’re done with custom form components, we’ll turn our attention to work-
ing with files. The ability to upload files is a common requirement in applications, and
Blazing Trails is no different. We need to allow the user to upload a trail image if they
choose, and Blazor provides us a component for doing just that. However, this Input
component doesn’t work quite the same as the rest. We’ll learn how it differs and how
to use it within our form.

 Finally, we’ll finish up the chapter by modifying our form to allow the editing of
existing trails. We’ll do this in a way that allows maximum reuse of components but
that keeps the code as clean and easy to understand as possible.

6.1 Customizing validation CSS classes
CSS frameworks such as Bootstrap (https://getbootstrap.com), Materialize (https://
materializecss.com), or Bulma (https://bulma.io) all have predefined classes for valid
and invalid input states. Blazor allows us to use these classes—instead of the default
ones it provides—by specifying them in a custom FieldCssClassProvider. As
we’re using Bootstrap in Blazing Trails, let’s modify the app to use the classes provided
by Bootstrap for valid and invalid inputs.

6.1.1 Creating a FieldCssClassProvider

To do this, we need to create a class derived from FieldCssClassProvider. We’re
going to create this class in a new folder at the root of BlazingTrails.Client
called Validation. The following listing shows the code.

public class BootstrapCssClassProvider : FieldCssClassProvider
{
 public override string GetFieldCssClass(EditContext editContext,
 ➥in FieldIdentifier fieldIdentifier)
 {
 var isValid = !editContext
 ➥.GetValidationMessages(fieldIdentifier).Any();

 if (editContext.IsModified(fieldIdentifier))
 {
 return isValid ? " is-valid" : "is-invalid";
 }

 return isValid ? "" : "is-invalid";
 }
}

Listing 6.1 BootstrapCssClassProvider.cs

Check if the current field
has any validation errors
set isValid appropriately.

 The field has been
modified. Return
custom CSS classes
depending on
whether the field is
valid or not.The field has not been modified.

Return a custom CSS class if the field
is invalid but not if it’s valid.

https://getbootstrap.com
https://materializecss.com
https://materializecss.com
https://bulma.io

142 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
When deriving from FieldCssClassProvider, we need to override the Get-
FieldCssClass method. This method takes an EditContext and a FieldIdenti-
fier that represents the field in the form we’re getting CSS classes for. As I
mentioned in chapter 5, the EditContext is the brain of the form and keeps track of
the state of each field in the form. We can use the GetValidationMessages method
on the EditContext to check if there are any validation messages for the current
field. If there are, then we know the field is currently not valid and we can set the
isValid variable accordingly, or vice versa.

 Next, we can use the IsModified method on the EditContext to check if the
field has been edited by the user in any way. For a field to be modified, the user must
have typed something or changed a selection. Even typing into an empty field and
then removing all the characters returning it to its originally empty state would class
the field as modified.

 When we have a modified field—depending on if it’s valid or not—we’re going to
return either the is-valid CSS class or the is-invalid CSS class. These classes are
part of the Bootstrap framework and will allow us to remove the custom CSS classes we
created in the previous chapter.

 If the field isn’t modified, then we’re only going to return a CSS class when the
field is invalid. If we returned a valid CSS class at this point, all the fields in the form
would show valid styling when it was first loaded before any user input has occurred,
as shown in figure 6.1.

Figure 6.1 Valid styling is shown on all fields as soon as the form is loaded.

The valid styles are applied before any input from the user.

1436.1 Customizing validation CSS classes
As you can see, this would create a bad user experience, as it appears that the form is
valid, even when no data has been entered or selected.

6.1.2 Using custom FieldCssClassProviders with EditForm

To use our BootstrapCssClassProvider with the EditForm component, we need
to plug it in. To do this, we use the EditContext. When we created our form in chapter
5, we passed a model to the EditForm component. Internally, the EditForm creates an
EditContext instance using that model. However, we can create an EditContext
ourselves and pass that to the EditForm component instead of the model.

 Depending on what you’re doing, this can be especially useful. Having direct
access to the EditContext allows us to perform actions such as manually triggering
validation via the Validate method. Or hook onto events such as OnFieldChanged
or OnValidationStateChanged. However, we’re going to use it to plug in our cus-
tom CSS class provider.

 To update our new trail form to use the new BootstrapCssClassProvider, we
will add the following code.

<EditForm EditContext="_editContext"
➥OnValidSubmit="SubmitForm">

// other code omitted for brevity

private EditContext _editContext = default!;

protected override void OnInitialized()
{
 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(
 ➥new BootstrapCssClassProvider());
}
// other code omitted for brevity

We start by adding a new private field for our EditContext instance. We create a new
instance of EditContext inside the OnInitialized life cycle method, passing in the
trail model we previously passed directly to the EditForm. We then use the SetField-
CssClassProvider method to plug in our new BootstrapCssClassProvider.
Finally, we update the opening tag of the EditForm, passing our EditContext
instance rather than passing to the trail model.

NOTE It’s important to set either the EditContext or Model parameter on
an EditForm. Attempting to set both parameters will result in a run-time error.

At this point, the form is configured to use the custom CSS validation classes. To see
the styling in action, run the app and complete a few fields of the form and click Sub-
mit. Figure 6.2 shows the new styling.

Listing 6.2 AddTrailPage.razor: Using BootstrapCssClassProvider

We pass the EditContext instance we
create to the EditForm rather than
passing it to the model directly.

 Shows the new private field
for our EditContext instance

Creates a new EditContext
instance for the trail model

Configures the EditContext to use
our new BootstrapCssClassProvider

144 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
Figure 6.2 The new validation styling using the Bootstrap CSS classes

Before we move on, we just need to tidy up our CSS. We will remove the classes we cre-
ated in chapter 5 for validation, except the .validation-message class, as they’re
no longer required. Inside the app.css file, in wwwroot > css, make the modifications
shown in the following listing.

input.invalid,
textarea.invalid,
select.invalid {
 border-color: red;
}

input.is-valid.modified,
text.is-valid.modified,
select.is-valid.modified {
 border-color: green;
}

The validation-message class needs to remain, as it styles the validation message
shown under the input. Currently, it’s not possible to specify custom CSS classes for
the ValidationMessage component. The other two sets of styles can be removed.
These are the styles that are now being provided by Bootstrap.

Listing 6.3 app.css: Removing redundant validation CSS classes

Clicking Submit with
only some fields completed
demonstrates the new
validation styling in action.

Remove this CSS class.

Remove this CSS class.

1456.2 Building custom input components with InputBase
6.2 Building custom input components with InputBase
While Blazor provides us all the basic input components we need to build a form, at
some point we will need something a little more complex—or a little more tailored to
our needs. For Blazing Trails, we have such a need.

 You may have noticed that the TrailDto and Trail database entity have a field
for recording the time it takes to complete a trail called TimeInMinutes. We’re cur-
rently not exposing this on our form because it wouldn’t be a nice experience for the
user, as they would have to work out the total number of minutes. It would be much
nicer if they could input hours and minutes and the app does the work of converting
it. This is a great opportunity for a custom input component.

 To help us get started with building a custom input component, the Blazor team
has included a base type that is going to do a lot of the heavy lifting for us, Input-
Base<T>. This type is going to handle the integration with Blazor’s EditContext.
This means that our component will automatically be registered with the validation
system and have its state tracked. In fact, all we need to do is provide the UI and
an implementation for a method called TryParseValueFromString. You can see
what the final component will look like in
figure 6.3.

 As you can see, the component will render
two input elements allowing the user to input
the trail walking time in hours and minutes.
Internally, the component will take those two
values and convert them to a single integer
value that will be bound to the form model.

6.2.1 Inheriting from InputBase<T>

The first thing we need to do is create a new component in our ManageTrails fea-
ture called InputTime.razor. Then we can add the initial code for the component
shown in the following listing.

@inherits InputBase<int>

<div class="input-time">
 <div>
 <input class="form-control"
 type="number"
 min="0" />
 <label>Hours</label>
 </div>
 <div>
 <input class="form-control"
 type="number"
 min="0"
 max="59" />

Listing 6.4 InputTime.razor: Initial code

Figure 6.3 The final look of the custom
input component we’re going to build

The inherits directive allows us to specify
InputBase<T> as a base class for our
component. The type parameter must match the
type of the form model property the component
will bind to. In our case, that is an int. This input will

record the hours
the user enters.

This input will record the
minutes the user enters.

146 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 <label>Minutes</label>
 </div>
</div>

@code {
 protected override bool TryParseValueFromString(
 ➥string? value, out int result,
 ➥out string validationErrorMessage)
 => throw new NotImplementedException();
}

We start by inheriting from InputBase<T> using the inherits directive and setting
the type parameter to int. The type specified should be the type you want to work
with on the form model. Our TimeInMinutes property is an int:

public int TimeInMinutes { get; set; }

The markup section of the component declares two regular HTML input elements—
one for the hours and one for the minutes. Their type attributes are set to number.
The browser will use this to stop non-numeric values from being entered by the user.
There are also min and max attributes set to keep the entered values within the cor-
rect ranges for hours and minutes.

 In the code block, we have provided an implementation for the TryParseValue-
FromString method. This method must be implemented by any component derived
from InputBase<T>. Its job is to convert a string value to the type that the compo-
nent is bound to on the form model. However, depending on how you build a custom
input component, this method may not ever get called. This will be the case with our
custom component. Let me explain why. The base class provides two properties to
update the model value:

 CurrentValueAsString

 CurrentValue

If we were writing a component that only required a single HTML input element, we
could bind that input directly to the CurrentValueAsString property. We’d need
to use this property, as HTML inputs only work with string values. When a value was
entered in the input, it would set CurrentValueAsString and Blazor would then
call the TryParseValueFromString method. This is because Blazor can’t reliably
convert CurrentValueAsString to the type we specified when inheriting from
InputBase<T>.

 However, we have two input elements. We can’t bind them both to one property.
So, we need to create our own fields to bind them to. We then need to take those indi-
vidual values and convert them into a single integer value we can update the model
with. This is where the second property comes in. CurrentValue is a generic prop-
erty and will adopt the type specified when inheriting InputBase<T>. In our case,
that would be an int. If this property is used to set the model value, then no type

When using InputBase<T>, we must
provide an implementation for the
TryParseValueFromString method.
However, with our design, this
method won’t be called.

1476.2 Building custom input components with InputBase
conversion is required. Hence the TryParseValueFromString method will not be
called.

 This might sound a bit complex, so let’s see it in action. The following listing shows
the binding of the inputs and the updating of the model.

// Other code omitted for brevity
<input class="form-control" type="number" min="0"

➥@onchange="SetHourValue" value="@_hours" />
// Other code omitted for brevity

// Other code omitted for brevity
<input class="form-control" type="number" min="0"

➥max="59" @onchange="SetMinuteValue"

➥value="@_minutes" />
// Other code omitted for brevity

@code {
 private int _hours;
 private int _minutes;

 // Other code omitted for brevity

 private void SetHourValue(ChangeEventArgs args)
 {
 int.TryParse(args.Value?.ToString(),
 ➥out _hours);
 SetCurrentValue();
 }

 private void SetMinuteValue(ChangeEventArgs args)
 {
 int.TryParse(args.Value?.ToString(),
 ➥out _minutes);
 SetCurrentValue();
 }

 private void SetCurrentValue()
 => CurrentValue = (_hours * 60)
 ➥+ _minutes;
}

Until now, when we’ve bound to HTML inputs, we’ve used the bind directive. How-
ever, that method wouldn’t be optimal in this scenario. We need to perform some
actions every time either the hour or minute values change. While we could use the
bind directive with a property and do the work inside the setter method, that would
still require us to have a private backing field.

 Instead, we’re using fields to set the value of the inputs and then handling the
onchange event of each one so we can perform some logic. For reference, what we’re
doing here is what the bind directive does under the hood.

Listing 6.5 InputTime.razor: Binding to inputs

The hour input’s value is set using
the _hours private field. Whenever
that value is changed, the onchange
event calls the SetHourValue method.

The minutes input’s value is set using the _minutes
private field. Whenever that value is changed, the
onchange event calls the SetMinuteValue method.

These fields track the current
value of each input.

Using the ChangeEventArgs, this
method extracts the new value

entered by the user and converts
it to an integer and sets the _hours
field. It then calls SetCurrentValue.

Using the ChangeEventArgs, this
method extracts the new value

entered by the user and converts it to
an integer and setting the _minutes
field. It then calls SetCurrentValue.

The _hours and _minutes fields are converted
to a total minutes value, and then the
CurrentValue property is set to that value.

148 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 Both the SetHourValue and SetMinuteValue methods do the same thing. They
extract the value entered in the input and convert it to an integer value setting either
the _hour or _minute field, depending on which method is firing. We must do this
conversion, as all HTML inputs work with strings. Once the fields have been set, the
SetCurrentValue method is called.

 The SetCurrentValue method works out the total number of minutes based on
the values of the _hours and _minutes fields. It then assigns that value to the
CurrentValue property—this property comes from the base class. By setting this prop-
erty, all the logic for triggering validation and updating the model value will be run.

 The final piece to the component involves loading an existing value—for example,
when the component is being used to edit an existing record. For this we will use the
OnParametersSet life cycle method. The code is shown in the following listing.

protected override void OnParametersSet()
{
 if (CurrentValue > 0)
 {
 _hours = CurrentValue / 60;
 _minutes = CurrentValue % 60;
 }
}

When the component is used in a form that is editing an existing record, the model
property that it is bound to could have a value. If that’s the case, the CurrentValue
property on the base class will hold that value. We can check if it’s greater than 0, and
if so, we know we have an existing value we need to process. We can then perform the
calculations required to set the hours and minutes fields, based on the Current-
Value. Our component is almost complete; we just need to add some styling.

6.2.2 Styling the custom component

To give our new component the right look, we need to add a little CSS. Once again,
we’ll take advantage of Blazor’s CSS isolation feature. Figure 6.4 shows how the com-
ponent will look when we’re done.

We will add a new SCSS file into the Features > ManageTrails folder called Input-
Time.razor.scss. We will add the following code into this file.

Listing 6.6 InputTime.razor: Loading existing values

If the model property bound
to the component has a value,
CurrentValue will be set.

Set the values of hours and minutes
based on the CurrentValue.

Figure 6.4 The labels and inputs displayed in
a row once the new styling has been applied

1496.2 Building custom input components with InputBase
.input-time {
 display: flex;

 div {
 display: flex;
 align-items: center;
 margin-right: 20px;

 input {
 width: 90px;
 margin-right: 10px;
 }

 label {
 margin-bottom: 0;
 }
 }
}

Most of the CSS is self-explanatory. The key layout feature we’re leveraging is
display: flex. This is going to make all the inputs and labels display in a row.

 The last piece of styling we need to configure is for validation. Another nice fea-
ture of using InputBase is that it provides us a property called CssClass that out-
puts the correct validation classes based on our field’s state. For example, if our field
contained an invalid value, based on the classes we’ve configured in our Bootstrap-
CssClassProvider, CssClass would output the string "is-invalid".

 We’re going to reference the CssClass property in the class attribute on both of
our input elements. First, we’ll update the hours input:

<input class="form-control @CssClass" type="number" min="0"
@onchange="SetHourValue" value="@_hours" />

Then we’ll update the minutes input:

<input class="form-control @CssClass" type="number" min="0" max="59"
@onchange="SetMinuteValue" value="@_minutes" />

Our custom input component is complete. We can now turn our attention to integrat-
ing it in our form.

6.2.3 Using the custom input component

We will add our new custom component to the Difficulty section of the form, right
under the Length field. The following listing shows the updated code for the Diffi-
culty section of the form.

<FormFieldSet Width="col-3">
 <label for="trailLength" class="font-weight-bold text-secondary">
 ➥Length (km)</label>

Listing 6.7 InputTime.razor.scss

Listing 6.8 AddTrailPage.razor: Updated Difficulty section

Using display: flex on both the
container div and the internal div will
display all the elements in a row.

150 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 <InputNumber @bind-Value="_trail.Length" class="form-control"
 ➥id="trailLength" />
 <ValidationMessage For="@(() => _trail.Length)" />
</FormFieldSet>

<FormFieldSet Width="col-5">
 <label for="trailTime" class="font-weight-bold text-secondary">
 ➥Time</label>
 <InputTime @bind-Value="_trail.TimeInMinutes"
 ➥id="trailTime" />
 <ValidationMessage For="@(() => _trail.TimeInMinutes)" />
</FormFieldSet>

As you can see, the new component is bound to the model property using the same
bind-Value syntax that the other input components use. The new component is now
integrated into the form, but we still have a few updates to make.

 We need to add some validation for the TimeInMinutes property to our Trail-
Validator class. We also need to update the AddTrailEndpoint in the API to use
the value from the model, as it’s currently hardcoded. Let’s start with the validation.

 If we open the TrailDto class in the BlazingTrails.Shared project—under Fea-
tures > ManageTrails—we can add the following validation rule to the Trail-
Validator class:

RuleFor(x => x.TimeInMinutes).GreaterThan(0).WithMessage("Please enter a
time");

This rule is going to make sure that the user has entered a positive value for the trail
time. This can be placed anywhere in the existing list of rules; order doesn’t matter.

 With the validation updated, we just need to update the endpoint. In the Blazing-
Trails.Api project, open the AddTrailEndpoint class in Features > ManageTrails. At
the start of the HandleAsync method where the new trail is being created, we are cur-
rently hardcoding the value of the TimeInMinutes property to 0:

TimeInMinutes = 0

This needs to be updated to get the value from the request, just like the other
properties:

TimeInMinutes = request.Trail.TimeInMinutes

With that change, we’re done. If we run the application, we can see the new compo-
nent displayed in the form (figure 6.5).

The InputTime component is bound
to the model property using the

same bind-Value syntax as the other
input components on the form.

1516.3 Working with files
Figure 6.5 The new InputTime component displayed in the form

We have successfully created and integrated a custom input component into our
form, which enables a much more intuitive experience for the user. The next task
we’ll tackle is adding the ability for the user to upload an image for a trail.

6.3 Working with files
Just as with other HTML input elements, Blazor provides a component out of the box
for uploading files. This component is called InputFile. We’re going to update our
form to use this component, allowing a user to upload an image for their trail—if they
choose.

 Unfortunately, uploading files isn’t as simple as binding the input component to a
property on the model. We’re going to be changing our form to make two calls to the
API. The first is our current call, which uploads the trails details as JSON. The second
is going to upload the image—if present—as multipart form data. This happens
because there is currently no built-in support in ASP.NET Core for mixing JSON and
multipart requests. However, the overhead of the additional request isn’t much, and it
will only happen if there is an image to upload.

6.3.1 Configuring the InputFile component

We’re going to start by adding the InputFile component to our form. This is going
to be at the end of the Basic Details section, after the location field (see listing 6.9).

The new InputTime
component in the form

152 CHAPTER 6 Forms and validation—Part 2: Beyond the basics

<FormFieldSet>
 <label for="trailImage" class="font-weight-bold text-secondary">
 ➥Image</label>
 <InputFile OnChange="LoadTrailImage" class="form-control-file"
 ➥id="trailImage" accept=".png,.jpg,.jpeg" />
</FormFieldSet>

The most important point to notice is that the InputFile component doesn’t use
the bind directive as the other input components do. Instead, we must handle the
OnChange event it exposes. Just as with file uploading in regular HTML forms, we can
provide a list of file types we want the user to be able to upload using the accept attri-
bute. Under the hood, the InputFile component renders an HTML input element
with a type of file. The accept attribute is passed down to this element when the com-
ponent renders.

 Now that we have the InputFile component in place, we need to add the
LoadTrailImage method to the code block. See the following listing.

private IBrowserFile? _trailImage;

// other code omitted for brevity

private void LoadTrailImage(InputFileChangeEventArgs e)
 => _trailImage = e.File;

When the user selects a file, the OnChange event will fire and the LoadTrailImage
method will run. This method uses the InputFileChangeEventArgs to assign the
selected file to the trailImage field so we can access it later, when the form is
submitted.

Listing 6.9 AddTrailPage.razor: Adding InputFile to Basic Details

Listing 6.10 AddTrailPage.razor: Adding LoadTrailImage to code block

Handling multiple files
In applications that need to allow multiple files to be selected for upload, the mul-
tiple attribute must be added to the InputFile component. This will allow the
user to select more than one file in the selection dialog. Once this is in place, some
additional functionality on the InputFileChangeEventArgs can be used.

The FileCount property can be used to check how many files have been selected
by the user. To access those files, there is the GetMultipleFiles method. This
method will return an IReadOnlyList of IBrowserFile. Each IBrowserFile
represents a selected file.

By default, GetMultipleFiles will return 10 files. If the user has selected more,
then the method will throw an exception. However, this limit can be changed by pass-
ing in the number of files the method should return.

InputFile doesn’t use the bind directive
like other input components. Instead, we

must handle the OnChange event.

The trailImage field
holds the file data.

Assigns the selected file
to the trailImage field

1536.3 Working with files
We now have the basics in place for the user to select an image. We can turn our atten-
tion to what happens when the form is submitted.

6.3.2 Uploading files when the form is submitted

Currently, when we submit the form, the data entered is packaged into an AddTrail-
Request and dispatched to the API via MediatR. We’re going to extend this logic to
check if an image has been selected and make an additional call to upload it.

 Starting with the SubmitForm method, we’re going to update the existing code to
the code shown in this listing.

private async Task SubmitForm()
{
 var response = await Mediator.Send(new AddTrailRequest(_trail));
 if (response.TrailId == -1)
 {
 _errorMessage = "There was a problem saving your trail.";
 _submitSuccessful = false;
 return;
 }

 if (_trailImage is null)
 {
 _submitSuccessful = true;
 ResetForm();
 return;
 }

 await ProcessImage(response.TrailId);
}

private void ResetForm()
{
 _trail = new TrailDto();
 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(
 ➥new BootstrapCssClassProvider());
 _trailImage = null;
}

The first change is a check to see if a trail image has been selected. If an image hasn’t
been selected, then we can reset the form as the method did originally. The logic for
resetting the form is now in its own method. As we’ll see in a second, this is because it
will be called in multiple places and refactoring it into its own method will avoid
duplication of code.

If a trail has been selected, then we call the ProcessImage method. This method
takes the trail ID returned from the AddTrailRequest. Listing 6.12 shows the code
for the ProcessImage method.

Listing 6.11 AddTrailPage.razor: Updated SubmitForm method

Checks if a trail image
has been selected

If no image is selected,
reset the form.

Call ProcessImage method
passes in the trail ID returned

from the previous API call.

154 CHAPTER 6 Forms and validation—Part 2: Beyond the basics

s
private async Task ProcessImage(int trailId)
{
 var imageUploadResponse = await Mediator
 ➥.Send(new UploadTrailImageRequest(trailId, _trailImage));

 if (string.IsNullOrWhiteSpace(imageUploadResponse.ImageName))
 {
 _errorMessage = "Your trail was saved,
 ➥but there was a problem uploading the image.";
 return;
 }

 _submitSuccessful = true;
 ResetForm();
}

The method first attempts to upload the image. This is done using an UploadTrail-
ImageRequest, dispatched via MediatR. The request takes the trail ID the image is
for, as well as the image to be uploaded.

 If there was a problem uploading the image, then an error message is shown to the
user. If the image was uploaded successfully, the form is reset and the user will be able
to add another trail if they choose.

BUILDING THE REQUEST AND HANDLER

That is all the changes we need to make in the form component. We now need to add
the UploadTrailImageRequest to BlazingTrails.Shared, a handler for the request
in the Client project. The following listing shows the code for the UploadTrail-
ImageRequest class, which is in the BlazingTrails.Shared project under Features >
ManageTrails.

public record UploadTrailImageRequest(int TrailId, IBrowserFile File) :

➥IRequest<UploadTrailImageRequest.Response>
{
 public const string RouteTemplate =
 ➥"/api/trails/{trailId}/images";

 public record Response(string ImageName);
}

You will notice as we add more requests that their formats are largely uniform. The
properties that make up the request are defined using positional construction—an awe-
some feature of C# records.

In this case, we’re defining the TrailId property and the File property using
positional construction. The record also defines a route template, which is used in

Listing 6.12 AddTrailPage.razor: ProcessImage method

Listing 6.13 UploadTrailImageRequest.cs

The trail image is uploaded via
the UploadTrailImageRequest,

which takes the trail ID and the
image as an IBrowserFile.

If the upload wasn’t
successful, an error
message is shown.

If the upload is successful,
the form is reset.

The record is defined with two propertie
for trailId and the file to be uploaded.

Shows the route template
for the request

This is the response that
the request will return.

1556.3 Working with files

tent
ile
both the endpoint and handler, as well as a response, which defines the data returned
from the request.

Now that we have the request in place, we can add a handler for it back in the Cli-
ent project. This new class will go in the ManageTrails feature. The following listing
shows the code.

public class UploadTrailImageHandler :

➥IRequestHandler<UploadTrailImageRequest, UploadTrailImageRequest.Response>
{
 private readonly HttpClient _httpClient;

 public UploadTrailImageHandler(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<UploadTrailImageRequest.Response> Handle
 ➥(UploadTrailImageRequest request, CancellationToken cancellationToken)
 {
 var fileContent = request.File
 ➥.OpenReadStream(request.File.Size, cancellationToken);

 using var content = new MultipartFormDataContent();
 content.Add(new StreamContent(fileContent),
 ➥"image", request.File.Name);

 var response = await _httpClient
 ➥.PostAsync(UploadTrailImageRequest.RouteTemplate
 ➥.Replace("{trailId}", request.TrailId.ToString()),
 ➥content, cancellationToken);

 if (response.IsSuccessStatusCode)
 {
 var fileName = await
 ➥response.Content.ReadAsStringAsync(
 ➥cancellationToken: cancellationToken);
 return new UploadTrailImageRequest
 ➥.Response(fileName);
 }
 else
 {
 return new UploadTrailImageRequest
 ➥.Response("");
 }
 }
}

We start by reading the selected file into a stream using the OpenReadStream
method, which is provided by the IBrowserFile type. Once we have the file to
upload as a stream, we can create a new MultipartFormDataContent object and
add the file to it.

Listing 6.14 UploadTrailImageHandler.cs

The IBrowserFile type includes a
helper method that allows the

file to be read as a stream.

A MultipartFormDataCon
type is created, and the f
is added to it.

The file is posted
to the API.

If the upload was successful,
the API response is
deserialized and returned.

If the upload failed, a response containing
an empty string is returned.

156 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
NOTE While we’re including the file’s name when adding it to the content,
we won’t be using it in the API. This is because the filename could be used for
malicious purposes and must be considered a security concern. In the API
endpoint, we will give the file a new name. We must include a name at this
point, however, for the request to be successful.

Once we’ve constructed the content we want to send to the API, we use the Http-
Client to post it. As part of doing this, we replace the {trailId} placeholder in the
route template with the trail ID passed in the request.

 If the operation is successful, we deserialize the response and return it using the
response type we defined on the request. Otherwise, we return a failed response.

ADDING THE API ENDPOINT

The final piece to the add is the API endpoint. This will go in the API project under
Features > ManageTrails. However, before we add it, we need to do a few admin tasks.

 First, we will add a package from NuGet to the API project. The package is called
ImageSharp (https://github.com/SixLabors/ImageSharp). We’ll use this package to
resize the uploaded image to the correct dimensions for our app.

 To install the ImageSharp package, add the following package reference to the
BlazingTrails.Api.csproj file:

<PackageReference Include="SixLabors.ImageSharp" Version="1.0.3" />

Second, we’ll create a new folder in the root of the API project called Images. This is
where we’ll store all the trail images that are uploaded.

 Third, we’ll make a small update in the Program.cs file that will enable the API to
serve the images in the new Images folder to the Blazor application as static files. After
the existing call to app.UseStaticFiles(), add the following code:

app.UseStaticFiles(new StaticFileOptions()
{
 FileProvider = new

PhysicalFileProvider(Path.Combine(Directory.GetCurrentDirectory(),
@"Images")),

 RequestPath = new Microsoft.AspNetCore.Http.PathString("/Images")
});

With our admin tasks complete, we can go ahead and add our endpoint. The follow-
ing listing shows the code for the UploadTrailImageEndpoint class.

public class UploadTrailImageEndpoint : BaseAsyncEndpoint

➥.WithRequest<int>.WithResponse<string>

{
 private readonly BlazingTrailsContext _database;

 public UploadTrailImageEndpoint(BlazingTrailsContext database)
 {

Listing 6.15 UploadTrailImageEndpoint.cs

https://github.com/SixLabors/ImageSharp

1576.3 Working with files

nd
 _database = database;
 }

 [HttpPost(UploadTrailImageRequest.RouteTemplate)]
 public override async Task<ActionResult<string>> HandleAsync([FromRoute]
 ➥int trailId, CancellationToken cancellationToken = default)
 {
 var trail = await _database.Trails
 ➥.SingleOrDefaultAsync(x => x.Id == trailId,
 ➥cancellationToken);
 if (trail is null)
 {
 return BadRequest("Trail does not exist.");
 }

 var file = Request.Form.Files[0];
 if (file.Length == 0)
 {
 return BadRequest("No image found.");
 }

 var filename = $"{Guid.NewGuid()}.jpg";
 var saveLocation = Path.Combine(Directory
 ➥.GetCurrentDirectory(), "Images", filename);

 var resizeOptions = new ResizeOptions
 {
 Mode = ResizeMode.Pad,
 Size = new Size(640, 426)
 };

 using var image = Image.Load(file
 ➥.OpenReadStream());
 image.Mutate(x => x.Resize(resizeOptions));
 await image.SaveAsJpegAsync(saveLocation,
 ➥cancellationToken: cancellationToken);

 trail.Image = filename;
 await _database
 ➥.SaveChangesAsync(cancellationToken);

 return Ok(trail.Image);
 }
}

We start by attempting to load the trail from the database that matches the supplied
trailId. If that fails, we return a bad request. Next, we attempt to load the submitted
image using the Request object. This object is available in every endpoint and allows
access to all the information regarding the current HTTP request. If no image is
found, we return a bad request.

 At this point we know we have a valid trail and a valid image. The next task is to
create a safe filename and specify where the file should be saved on the server. For our
purposes, saving the file to a local folder in the root of the API project is sufficient.

Attempts to load the
trail matching the trailId
and returns a bad
request if it doesn’t exist

Using the Request object, attempts to
load the file posted in the request and
returns a bad request if it can’t be fou

Creates a new filename for
the uploaded image that is
safe to use in the applicationSpecifies the

save location
for the file

Using ImageSharp, resize the
uploaded image to the
correct dimensions and save
it to the filesystem.

Update the trail with the location of
the trail image. This will be used
later in the UI to load the image.

158 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
However, you could easily save the files to a blob storage solution in your preferred
cloud provider.

 Next, we use the ImageSharp library to resize the image to the correct dimensions
and save it. Resizing images to the same height and width can be tricky. Depending on
their original dimensions, the ratio can get distorted and result in skewed images.
This is where libraries such as ImageSharp come in handy. ImageSharp offers a pad
mode when resizing images. This allows the uploaded image to keep its original
aspect ratio and allows additional padding to be added to either the top and bottom
or sides of the image as required.

 Finally, we update the trail with the location of the image. In the final section of
this chapter, we will update the existing areas of the application to load trails from the
API. At this point, we’ll use this location to load the trail image in the UI.

TESTING EVERYTHING OUT

We’ve now built everything we need, and it’s time to test our work. If we run the appli-
cation, we can see the new InputFile component displayed in the Basic Details sec-
tion (figure 6.6).

Figure 6.6 The InputFile component displayed on the form

Clicking the Choose File button will open a selection dialogue, as shown in figure 6.7.
As we applied an accept attribute when we added the InputFile to our form, the
dialog is showing only files that match the types defined in that attribute.

 Once we select an image file and complete the remaining field on the form, we
can submit it. If all has gone well, we should see a new image file in the Images folder
of the API project. The form should show a success message and be reset, as it was
before.

The InputFile component
displayed on the form

1596.4 Updating the form to allow editing
6.4 Updating the form to allow editing
The final piece of work we’re going to do is refactor our form so it can handle both
adding and editing of trails. To do this, we’ll extract the form from AddTrail-
Page.razor and make it into a standalone component. We can share it with
AddTrailPage.razor and a new page we’ll add called EditTrailPage.razor.
We’ll also do a bit of reorganization of our ManageTrails feature folder to make things
nice and tidy. These changes will also be reflected in the Shared and API projects. Fig-
ure 6.8 shows how things will look in the Client project once we’re done.

As you can see, the overall ManageTrails feature has been divided into subfeatures,
AddTrail and EditTrail. There is also a new Shared folder where the trail form
and other shared assets sit. Using subfeatures is a great way to aid in the understand-
ing of what the overall feature does. It also stops feature folders from becoming messy.

6.4.1 Separating the trail form into a standalone component

The first task we’ll tackle is separating out the trail form from the AddTrailPage and
make it into its own component, capable of handling both adding and editing. As part
of doing this, we’ll also start to create the new feature folder structure.

File types are limited
to those specified in
the Accept attribute.

Figure 6.7 The section dialog
used to select an image to upload

The overall
feature is
divided into
subfeatures.

Figure 6.8 The ManageTrails feature
is divided into subfeatures and the files
organized accordingly. This aids in
understanding what the overall feature
does and helps to keep things tidy.

160 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 We’ll start by creating a new folder called Shared in the ManageTrails feature folder
of the Client project. In this folder, we will create a new component called Trail-
Form.razor. Then we’ll move FormFieldSet.razor, FormSection.razor,
InputTime.razor, and UploadTrailImageHandler.cs into the Shared folder so
they’re next to the new TrailForm component we just created. We also need to
update the _Imports.razor file to include the new Shared folder by adding the follow-
ing line:

@using BlazingTrails.Client.Features.ManageTrails.Shared

Going back to the TrailForm component, we will copy the entire EditForm compo-
nent from AddTrailPage.razor and paste it into TrailForm.razor. We’ll then
add some initial code to the code block as shown in this listing.

<EditForm EditContext="_editContext" OnValidSubmit="SubmitForm">

 // Form markup omitted for brevity

</EditForm>

@code {
 private TrailDto _trail = new TrailDto();
 private IBrowserFile? _trailImage;
 private EditContext _editContext = default!;

 [Parameter]
 public Func<TrailDto, IBrowserFile?, Task>
 ➥OnSubmit { get; set; }

 public void ResetForm()
 {
 _trail = new TrailDto();
 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(
 ➥new BootstrapCssClassProvider());
 _trailImage = null;
 }

 protected override void OnInitialized()
 {
 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(
 ➥new BootstrapCssClassProvider());
 }

 private void LoadTrailImage(InputFileChangeEventArgs e)
 => _trailImage = e.File;

 private async Task SubmitForm()
 => await OnSubmit(_trail, _trailImage);

}

Listing 6.16 TrailForm.razor: Initial code

The OnSubmit parameter defines an
event that passes the data entered in
the form to the handler specified by
the consuming component.

Note that the ResetForm method
is public. This will be called by
the consuming component to
reset the form, if required.

The handler for the EditForm’s
OnValidSubmit event will invoke

the TrailForm’s OnSubmit
event. This allows the handler

to decide how to persist the
data from the form.

1616.4 Updating the form to allow editing
Some of this code is familiar. The various private fields are lifted straight from
the AddTrailPage along with the entire EditForm component and the On-
Initialized and LoadTrailImage methods. However, there are some new items
we need to understand.

 We’ve added a component parameter that defines a component event—On-

Submit. Farther down the code block we can see how it’s triggered. When the Edit-
Form’s OnValidSubmit event is invoked, the SubmitForm method is run. This, in
turn, calls the OnSubmit event passing in the trail data from the form, as well as the
image, if one has been selected. It’s worth noting here that we’re not using the
EventCallback<T>, which we’ve used previously. This is because we want to manu-
ally control when StateHasChanged is called in the handler. More on this later.

 The other method we’ve added is the ResetForm method. This method is self-
explanatory, but it’s important to notice that it is marked as public, rather than pri-
vate. This is so a component consuming our form can invoke this method and reset
the form, when required. More on this in a little bit.

6.4.2 Refactoring AddTrailPage.razor

Now we have the initial logic in place for our form component we can refactor the
AddTrailPage to use it. But first we’ll move AddTrailPage.razor and AddTrail-
Handler.cs into a new folder called AddTrail. At this point our ManageTrails feature
folder should look like figure 6.9.

Figure 6.9 The reorganized ManageTrails feature folder

Now that we have our files in the right place, we will update the markup section of the
AddTrailPage with the following code.

@page "/add-trail"
@inject IMediator Mediator

<PageTitle>Add Trail - Blazing Trails</PageTitle>

<nav aria-label="breadcrumb">
 <ol class="breadcrumb">
 <li class="breadcrumb-item">Home

Listing 6.17 AddTrailPage.razor: Updated markup

The AddTrail and
Shared folders with
their respective assets

162 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 <li class="breadcrumb-item active" aria-current="page">Add Trail

</nav>

<h3 class="mt-5 mb-4">Add a trail</h3>

@if (_submitSuccessful)
{
 <div class="alert alert-success" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
 ➥fill="currentColor" class="bi bi-check-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
 ➥0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384
 ➥7.323a.75.75 0 0 0-1.06 1.06L6.97 11.03a.75.75 0 0 0
 ➥1.079-.02l3.992-4.99a.75.75 0 0 0-.01-1.05z" />
 </svg>
 Your trail has been added successfully!
 </div>
}
else if (_errorMessage is not null)
{
 <div class="alert alert-danger" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
 ➥fill="currentColor" class="bi bi-x-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
 ➥0zM5.354 4.646a.5.5 0 1 0-.708.708L7.293 8l-2.647 2.646a.5.5
 ➥0 0 0 .708.708L8 8.707l2.646 2.647a.5.5 0 0 0 .708-.708L8.707
 ➥8l2.647-2.646a.5.5 0 0 0-.708-.708L8 7.293 5.354 4.646z" />
 </svg>
 @_errorMessage
 </div>
}

<TrailForm @ref="_trailForm" OnSubmit="SubmitNewTrail" />

The code at the top of the markup section is unchanged. However, where the original
EditForm component was, only a reference to the new TrailForm component
remains. We’re using Blazor’s @ref directive to capture a reference to the Trail-
Form. This is stored in the _trailForm field—which we’ll see when we look at the
code block. We’re also providing a handler for the TrailForm’s OnSubmit event.

 Before we jump into the code block, we have an opportunity to extract some reus-
able code out into components. The markup that shows the success and error alerts
will also be needed on the edit trail page when we add it a little later. This will save us
duplicating a fair amount of code, and if we ever want to update our success and error
alerts, we can do it in a single place.

 First let’s use the code in listing 6.18 to create a new component in the Shared
folder called SuccessAlert.razor.

The original EditForm component is replaced with the new
TrailForm component. Blazor’s @ref directive is used to capture

a reference to the component. This will be used to invoke the
ResetForm method. We also provide a OnSubmit handler.

1636.4 Updating the form to allow editing

<div class="alert alert-success" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
 ➥fill="currentColor" class="bi bi-check-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
 ➥0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0
 ➥0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0
 ➥0-.01-1.05z" />
 </svg>
 @Message
</div>

@code {
 [Parameter, EditorRequired]
 public string Message { get; set; } = default!;
}

The component is nice and simple. We’ve taken the original markup and removed
the hardcoded success message and replaced it with a parameter. Now the add and
edit trail pages will be able to specify their own unique success messages.

 Now let’s do the same thing for error markup. We’ll add a new component called
ErrorAlert.razor and add the following code.

<div class="alert alert-danger" role="alert">
 <svg xmlns="http://www.w3.org/2000/svg" width="18" height="18"
 ➥fill="currentColor" class="bi bi-x-circle-fill" viewBox="0 0 16 16">
 <path fill-rule="evenodd" d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16
 ➥0zM5.354 4.646a.5.5 0 1 0-.708.708L7.293 8l-2.647 2.646a.5.5 0 0 0
 ➥.708.708L8 8.707l2.646 2.647a.5.5 0 0 0 .708-.708L8.707 8l2.647-2.646a.5.5
 ➥0 0 0-.708-.708L8 7.293 5.354 4.646z" />
 </svg>
 @Message
</div>

@code {
 [Parameter, EditorRequired]
 public string Message { get; set; } = default!;
}

Just as with the SuccessAlert component, all we’ve done is copied the markup and
replaced the hardcoded message with a parameter.

 We can now update the AddTrailPage to use the new components as shown in
the following listing.

@if (_submitSuccessful)
{

Listing 6.18 SuccessAlert.razor

Listing 6.19 ErrorAlert.razor

Listing 6.20 AddTrailPage.razor: Adding the alert components

The hardcoded success message
has been replaced with a
parameter to allow the consuming
component to provide a success
message of its choice.

The hardcoded error message
success message has been replaced
with a parameter to allow the
consuming component to provide
an error message of its choice.

164 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 <SuccessAlert Message="Your trail has been added
 ➥successfully!" />
}
else if (_errorMessage is not null)
{
 <ErrorAlert Message="@_errorMessage" />
}

As you can see, this has tidied up the code for the Alert section nicely. Plus, we can
reuse the new components when we build the edit trail page. It’s a win-win!

 With that small refactor out of the way, we can get back to updating the code block
for AddTrailPage.razor. The updated code block is shown in the following listing.

@code {
 private bool _submitSuccessful;
 private string? _errorMessage;
 private TrailForm _trailForm = default!;

 private async Task SubmitNewTrail(TrailDto trail, IBrowserFile? image)
 {
 var response = await Mediator.Send(new AddTrailRequest(trail));
 if (response.TrailId == -1)
 {
 _submitSuccessful = false;
 _errorMessage = "There was a problem saving your trail.";
 StateHasChanged();
 return;
 }

 if (image is null)
 {
 _submitSuccessful = true;
 _trailForm.ResetForm();
 StateHasChanged();
 return;
 }

 _submitSuccessful = await ProcessImage(response.TrailId, image);
 if (_submitSuccessful)
 {
 _trailForm.ResetForm();
 }

 StateHasChanged();
 }

 private async Task<bool> ProcessImage(int trailId,
 ➥IBrowserFile trailImage)
 {

Listing 6.21 AddTrailPage.razor: Updated code block

The previous markup for the success alert has been
replaced with the new SuccessAlert component,
passing in a custom success message.

The previous markup for the error
alert has been replaced with the
new ErrorAlert component,
passing in a custom error message.

If there was an error saving the trail,
manually call StateHasChanged to
update the UI with the error message.

If the trail was saved successfully and didn’t
have an image, reset the TrailForm via the
reference captured by the _trailForm field.

Shows a manual call to
StateHasChanged to trigger
an update of the UI

If we are here, we’ve attempted to
upload a trail image. We trigger a UI update
to show the result of that operation.

1656.4 Updating the form to allow editing

 var imageUploadResponse = await Mediator.Send(
 ➥new UploadTrailImageRequest(trailId, trailImage));

 if (string.IsNullOrWhiteSpace(imageUploadResponse.ImageName))
 {
 _errorMessage = "Your trail was saved, but there was a
 ➥problem uploading the image.";
 return false;
 }

 return true;
 }
}

At this point, the add trail page should be working as it did previously. We’re now
going to add in the edit functionality.

6.4.3 Adding the edit trail feature

Before we start making any changes in the Client project to enable editing, we need to
make some changes to the Shared project. There are a few jobs for us to do:

1 We must update the TrailDto class—specifically, to handle updating the trail
image.

2 We need to update the folder structure so it mirrors the feature folder structure
in the Client project.

3 We need to add two new requests for our edit functionality: EditTrail-
Request and GetTrailRequest.

Let’s work through each of these items, starting at the top.

UPDATING THE TRAILDTO CLASS

When editing a trail, we will need to be able to display the trail’s current image, if it
has one. We will also need to give the user the ability to remove the image, update it,
or leave it unchanged. To enable these scenarios, we’ll update the class with two addi-
tional properties and a new enum, as shown in the following listing.

public class TrailDto
{
 // other properties omitted

 public string? Image { get; set; }
 public ImageAction ImageAction { get; set; }
}

public enum ImageAction
{
 None,
 Add,
 Remove
}

Listing 6.22 TrailDto.cs: Add new properties and ImageAction enum

Image holds the filename
of an existing image.

ImageAction allows us to set what
operation to perform on the trail
image when updating the trail.

Contains the various
operations that can be
performed on an image

166 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
When we add the edit functionality to the Client project, we need to load the trail to
edit from the API. At this point we need to know if the trail has an image. This is
where the new Image property comes in. If there is an image, this will contain the file-
name of that image so we can display it to the user.

 When the user is modifying a trail with an image, we need to know what operation,
if any, we’re performing on that image. This is where the second new property and
new enum come in. If they add or remove the image, we will record that intent using
the ImageAction property. We can then reference this in our endpoint to under-
stand what to do.

UPDATING THE SHARED PROJECT’S FOLDER STRUCTURE

To keep things organized, we want to make sure we keep the same feature folder
structure throughout the solution. Based on our changes in the Client project, we
need to add three new folders in the ManageTrails folder:

 AddTrail
 EditTrail
 Shared

Then we can move the existing files into their new homes. The AddTrailRequest.cs
file goes in the AddTrail folder and the TrailDto.cs and UploadImageRequest.cs files
go in the Shared folder.

ADDING THE NEW EDITTRAILREQUEST AND GETTRAILREQUEST TO THE SHARED PROJECT

While we’re in the Shared project, we might as well add the two new requests we need
for editing a trail. The first request we’re going to add is the GetTrailRequest. We’ll
add this in the new EditTrail folder we just created. The following listing shows the
code.

public record GetTrailRequest(int TrailId) :

➥IRequest<GetTrailRequest.Response>
{
 public const string RouteTemplate = "/api/trails/{trailId}";

 public record Response(Trail Trail);
 public record Trail(int Id, string Name, string Location, string? Image,
 ➥int TimeInMinutes, int Length, string Description,
 ➥IEnumerable<RouteInstruction> RouteInstructions);
 public record RouteInstruction(int Id, int Stage, string Description);
}

The GetTrailRequest takes an ID for the trail that must be retrieved from the API.
It also defines the response for the request. This is a copy of the current data for the
requested trail and will be used to populate the trail form.

Listing 6.23 GetTrailRequest.cs

The record contains a single
property that holds the ID of
the trail to retrieve.

The request returns a response that contains all
the information needed by the Trail form.

1676.4 Updating the form to allow editing
 The other request we need to add is the EditTrailRequest. This will be called
when the form is submitted once the user has finished editing. Again, this will be
added to the EditTrail folder alongside the previous request. The following listing
shows the code.

public record EditTrailRequest(TrailDto Trail) :

➥IRequest<EditTrailRequest.Response>
{
 public const string RouteTemplate = "/api/trails";
 public record Response(bool IsSuccess);
}

public class EditTrailRequestValidator : AbstractValidator<EditTrailRequest>
{
 public EditTrailRequestValidator()
 {
 RuleFor(x => x.Trail).SetValidator(
 ➥new TrailValidator());
 }
}

The EditTrailRequest takes the edited trail. To make sure that data is valid, we
reuse the same TrailValidator we used with the AddTrailRequest. This ensures
we’re using the same validation rules whether we’re adding or editing a trail.

All the changes for the Shared project are complete. We can now head back into
the Client project and build the new edit trail feature.

ADDING THE EDITTRAILPAGE TO THE CLIENT PROJECT

Back in the Client project. Let’s start by creating a new folder in the ManageTrails
folder called EditTrail. In that folder, we’re going to add a new component called
EditTrailPage.razor. The following listing shows the code for the markup section
of the new component.

@page "/edit-trail/{TrailId:int}"
@inject IMediator Mediator

<PageTitle>Edit Trail - Blazing Trails</PageTitle>

<nav aria-label="breadcrumb">
 <ol class="breadcrumb">
 <li class="breadcrumb-item">Home
 <li class="breadcrumb-item active" aria-current="page">
 ➥Edit Trail

</nav>

@if (_isLoading)
{

Listing 6.24 EditTrailRequest.cs

Listing 6.25 EditTrailPage.razor: Markup section

Shows the edited trail
data stored in the Trail
property on the record

To validate the trail, we reuse the
TrailValidator that lives with the TrailDto. This
ensures we’re only using one set of validation
rules whether we’re adding or editing a trail.

As we need to load the trail being edited
from the API, we’re going to show a loading
message until the trail is available.

168 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 <p>Loading trail...</p>
}
else
{
 <h3 class="mt-5 mb-4">Editing trail: @_trail.Name</h3>

 @if (_submitSuccessful)
 {
 <SuccessAlert
 ➥Message="Your trail has been edited successfully!" />
 }
 else if (_errorMessage is not null)
 {
 <ErrorAlert Message="@_errorMessage" />
 }

 <TrailForm Trail="_trail"
 ➥OnSubmit="SubmitEditTrail" />
}

Most of this code is extremely like that of the AddTrailPage component—with the
word Add swapped for Edit. A key difference is the addition of the if statement, which
shows a loading message when isLoading is true. As we need to fetch the details of
the trail to edit from the API, it is a good practice to show a loading indicator of some
kind, just in case the call is slow to return. Once the trail has been loaded, the rest of
the markup is displayed, including the TrailForm.

 Although we’ve not implemented this yet—we’ll do that once we’re done here—
we’re passing in the trail we want to edit to the TrailForm component. We also sup-
ply a handler for the form’s OnSubmit event.

 Now let’s take a look at the code block. We’re going to do this in two parts, as there
are quite a few things to point out. The following listing shows the first half of the
code block.

private bool _isLoading;
private bool _submitSuccessful;
private string? _errorMessage;
private TrailDto _trail = new TrailDto();

[Parameter] public int TrailId { get; set; }

protected override async Task OnInitializedAsync()
{
 _isLoading = true;

 var response = await Mediator
 ➥.Send(new GetTrailRequest(TrailId));

Listing 6.26 EditTrailPage.razor: Code block part 1

We reuse the SuccessAlert we
created when refactoring the

AddTrailPage component.

We reuse the ErrorAlert we
created when refactoring the
AddTrailPage component.

The TrailForm is referenced as in the
AddTrailPage. However, this time it also
provides a handler for the OnSubmit event.
We’re also passing in the trail to be edited.

When the component is initialized,
the _isLoading field is set to true.

The request is then dispatched
to the API via MediatR.

1696.4 Updating the form to allow editing
 if (response.Trail is not null)
 {
 _trail.Id = TrailId;
 _trail.Name = response.Trail.Name;
 _trail.Description = response.Trail.Description;
 _trail.Location = response.Trail.Location;
 _trail.Image = response.Trail.Image;
 _trail.Length = response.Trail.Length;
 _trail.TimeInMinutes = response.Trail.TimeInMinutes;
 _trail.Route.Clear();
 _trail.Route.AddRange(response.Trail
 ➥.RouteInstructions.Select(ri => new TrailDto.RouteInstruction
 {
 Stage = ri.Stage,
 Description = ri.Description
 }));
 }
 else
 {
 _errorMessage = "There was a problem loading the trail.";
 }

 _isLoading = false;
}

This part of the code block deals with loading the trail to be edited. When the compo-
nent is initialized, the _isLoading field is set to true, which causes the loading mes-
sage to be displayed in the markup. Then the request to loading the trail to be edited
is dispatched via MediatR. If a trail is returned, then its details are copied into the
_trail field. As we just saw in the markup, this field is passed into the TrailForm
component so it can display the trail’s current details to the user.

 Let’s move on to part 2 of the code block. This part is shown in the following list-
ing and covers persisting any updates to the trail.

private async Task SubmitEditTrail(TrailDto trail, IBrowserFile? image)
{
 var response = await Mediator.Send(new EditTrailRequest(trail));
 if (!response.IsSuccess)
 {
 _submitSuccessful = false;
 _errorMessage =
 ➥"There was a problem saving your trail.";
 }
 else
 {
 _trail.Name = trail.Name;
 _trail.Description = trail.Description;
 _trail.Location = trail.Location;
 _trail.Length = trail.Length;
 _trail.TimeInMinutes = trail.TimeInMinutes;
 _trail.Route.AddRange(trail.Route.Select(ri =>
 ➥new TrailDto.RouteInstruction

Listing 6.27 EditTrailPage.razor: Code block part 2

If the trail is returned, its details
are copied into a local field, which
is passed to the TrailForm.

_isLoading is set to false once the trail has been
loaded or an error message has been set.

If there was an error saving the
trail, an error message is shown.

Any updates made to
the trail instance
from the form are
applied to the trail.

170 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 {
 Stage = ri.Stage,
 Description = ri.Description
 }));

 _submitSuccessful = true;

 if (trail.ImageAction == ImageAction.Add)
 ➥_submitSuccessful = await ProcessImage(trail.Id, image!);
 if (trail.ImageAction == ImageAction.Remove)
 ➥_trail.Image = "";
 }
 }

 StateHasChanged();
}

private async Task<bool> ProcessImage(int trailId, IBrowserFile trailImage)
{
 var imageUploadResponse =
 ➥await Mediator.Send(new UploadTrailImageRequest(trailId, trailImage));

 if (string.IsNullOrWhiteSpace(imageUploadResponse.ImageName))
 {
 _errorMessage =
 ➥"Your trail was saved, but there was a problem uploading the image.";
 return false;
 }

 _trail.Image = imageUploadResponse.ImageName;
 return true;
}

When the user submits the form, the SubmitEditTrail method will be called. The
first thing it does is submit the updated trail details to the API via MediatR. The
response is then checked and if the request wasn’t successful, an error message is dis-
played to the user.

 If the request was successful, then the trail instance is updated with the values of
the trail from the form. We do this because when we call StateHasChanged at the
end of the method, the form will lose any changes made. This happens because the
TrailForm is a child of the EditFormPage and calling StateHasChanged will re-
render the EditTrailPage. This also re-renders the TrailForm and provides a
fresh copy of any parameters being passed in. As we’re passing in the trail from the
EditTrailPage, this will overwrite any changes entered by the user.

 Once the trail is updated, we indicate that the form was submitted successfully by
setting the _submitSuccessful field to true. We do this here, as the Process-
Image method could override it if there is a problem uploading a new image.

 Next, the ImageAction property is checked to see what should happen next. If an
image has been added, then the ProcessImage method is called, which uploads the
new image. A key job this method does is set the _trail.Image property to the name

If the user updated the trail
image, ProcessImage is called

to upload the new image.

If the user removed the image,
the Image property is cleared.

StateHasChanged is called to render any
updates to the UI based on image actions.

If a new image was selected,
update the local trails Image
property with the new filename.

1716.4 Updating the form to allow editing
of the newly uploaded image. This matters because it allows the newly uploaded
image to be displayed on the form once the submit process is complete.

 If the ImageAction is to remove the image, then the Image property is set to an
empty string. In the earlier request to update the trail details—which we’ll look at in a
bit—the physical image will be removed from the server. So, we are just tidying up the
UI state with this operation.

 Finally, we can trigger a UI update by calling StateHasChanged.

UPDATING THE TRAILFORM TO HANDLE EDITING

To handle editing, we need to complete some updates to the TrailForm component.
We need to add a parameter that allows a trail to be passed in for editing. We also
need to add some logic that will handle setting the ImageAction value we just talked
about.

 We’ll start by adding the code that will enable a trail to be passed in for editing.
The following listing contains the updates.

[Parameter]
public TrailDto? Trail { get; set; }

protected override void OnParametersSet()
{
 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(new BootstrapCssClassProvider());

 if (Trail != null)
 {
 _trail.Id = Trail.Id;
 _trail.Name = Trail.Name;
 _trail.Description = Trail.Description;
 _trail.Location = Trail.Location;
 _trail.Image = Trail.Image;
 _trail.ImageAction = ImageAction.None;
 _trail.Length = Trail.Length;
 _trail.TimeInMinutes = Trail.TimeInMinutes;

 _trail.Route.Clear();
 _trail.Route.AddRange(Trail.Route.Select(ri =>
 ➥new TrailDto.RouteInstruction
 {
 Stage = ri.Stage,
 Description = ri.Description
 }));
 }
}

The Trail parameter allows the consumer, the EditTrailPage, to pass in a trail to
be edited. The OnInitialized method has been replaced with the OnParameters-
Set method. As we learned in an earlier chapter, the OnParametersSet method will

Listing 6.28 TrailForm.razor: Updates to enable trail editing

The Trail parameter will allow an
existing trail to be passed into the form.

OnInitialized is replaced
with OnParametersSet. This

will be called whenever an
update happens to the

object passed in via the Trail
parameter. We need this so

we can update or remove
the image after the

SubmitEditTrail handler in
the EditTrailPage runs.

If we have a Trail, then we’re editing. We need to
copy the details of the trail to edit to the local _trail
field that the form components are bound to.

172 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
be called whenever a component parameter changes. We need this functionality, so if
an image is changed or removed during editing, the updated value—which is set in
the EditTrailPage > SubmitEditTrail method—can be shown on the form.

 Our final job in the TrailForm component is to handle setting the ImageAction
property. In terms of UX, we’re going to display the existing trail image, if there is
one, and provide a button to remove it (figure 6.10).

Figure 6.10 When a trail being edited has an image, it will be
 displayed with an option to remove it.

Once an image has been removed, we’ll display the InputFile component so the
user can select a new image. Let’s look at the following code.

// other code omitted
<FormFieldSet Width="col-6">
 <label for="trailImage" class="font-weight-bold text-secondary">
 ➥Image</label>
 @if (string.IsNullOrWhiteSpace(_trail.Image))
 {
 <InputFile OnChange="LoadTrailImage"
 ➥class="form-control-file" id="trailImage"
 ➥accept=".png,.jpg,.jpeg" />
 }
 else
 {
 <div class="card bg-dark text-white">

 <div class="card-img-overlay">
 <button class="btn btn-primary btn-sm"
 ➥@onclick="RemoveTrailImage">Remove</button>
 </div>
 </div>
 }
</FormFieldSet>
// other code omitted
@code {
 // other code omitted
 private void LoadTrailImage(InputFileChangeEventArgs e)

Listing 6.29 TrailForm.razor: Updates for editing the trail image

If an image exists, it’s
displayed with a button to
allow the user to remove it.

If the trail doesn’t have an image,
render the InputFile component,
allowing the user to select one.

If the trail has an
image, display it
along with a button
to remove it.

1736.4 Updating the form to allow editing
 {
 _trailImage = e.File;
 _trail.ImageAction = ImageAction.Add;
 }

 private void RemoveTrailImage()
 {
 _trail.Image = null;
 _trail.ImageAction = ImageAction.Remove;
 }
 // other code omitted
}

In the markup portion of the code, we’re adding a check for an existing image around
the InputFile component. If no image exists, we continue to display the InputFile
component, as before. However, if an image exists, we display it along with a button to
remove it. The styling for all this is taken care of by Bootstrap. We’re using the card
component markup (https://getbootstrap.com/docs/5.1/components/card/).

 Back in the code block, there is a small update to the LoadTrailImage method.
It now sets the ImageAction to Add whenever a trail is selected. A new method for
removing the trail image has also been added. This is called by the new Remove but-
ton we just added in the markup. It clears the Image property and sets the Image-
Action to Remove. This results in the UI updating to display the InputFile
component. The user is then able to select a new image if they choose.

ADDING THE GETTRAILREQUEST AND EDITTRAILREQUEST HANDLERS

Our final job in the Client project is to add the handlers for the GetTrailRequest
and EditTrailRequest. Once these are in place, we can add the API endpoints and
we’re done!

 Both new handlers will live in the ManageTrails > EditTrail feature folder. The fol-
lowing listing shows the GetTrailHandler.

public class GetTrailHandler :

➥IRequestHandler<GetTrailRequest, GetTrailRequest.Response?>
{
 private readonly HttpClient _httpClient;

 public GetTrailHandler(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<GetTrailRequest.Response?>
 ➥Handle(GetTrailRequest request, CancellationToken cancellationToken)
 {
 try
 {
 return await _httpClient
 ➥.GetFromJsonAsync<GetTrailRequest.Response>(

Listing 6.30 GetTrailHandler.cs

Set the ImageAction to add
when an image is selected.

This method is called when the
Remove Image button is clicked. It
will reset the Image property,
triggering the InputFile component
to show. It also marks the image to
be removed on the server.

https://getbootstrap.com/docs/5.1/components/card/

174 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
 ➥GetTrailRequest.RouteTemplate.Replace("{trailId}",
 ➥request.TrailId.ToString()));
 }
 catch (HttpRequestException)
 {
 return default!;
 }
 }
}

The handler receives the request from MediatR and makes an HTTP GET request to
the API. Before doing this, it replaces the {trailId} placeholder in the Route-
Template with the ID of the trail from the request. Now let’s look at the EditTrail-
Handler in the following listing.

public class EditTrailHandler :

➥IRequestHandler<EditTrailRequest, EditTrailRequest.Response>
{
 private readonly HttpClient _httpClient;

 public EditTrailHandler(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<EditTrailRequest.Response>
 ➥Handle(EditTrailRequest request, CancellationToken cancellationToken)
 {
 var response = await _httpClient
 ➥.PutAsJsonAsync(EditTrailRequest.RouteTemplate,
 ➥request, cancellationToken);

 if (response.IsSuccessStatusCode)
 {
 return new EditTrailRequest
 ➥.Response(true);
 }
 else
 {
 return new EditTrailRequest.Response(false);
 }
 }
}

The handler receives the updated trail details from MediatR and sends them to the
API using an HTTP PUT request. Depending on whether that call was successful or
not, either true or false is returned to the caller.

ADDING THE API ENDPOINTS FOR GETTRAILREQUEST AND EDITTRAILREQUEST

We are almost finished! The last step we must take is to update the API. Before we add
the new endpoints, we need to update the folder structure to match the Client and

Listing 6.31 EditTrailHandler.cs

The placeholder, trailId, in the
RouteTemplate is replaced with
the ID of the trail to edit before
making the HTTP request.

The updated trail details are set
to the API via a HTTP PUT request.

If the request was successful, a true
response is sent back to the caller.

1756.4 Updating the form to allow editing
Shared projects. Currently, we have only the ManageTrails folder containing the
AddTrailEndpoint.cs and UploadTrailImageEndpoint.cs files. Let’s add the subfolders
to match the other projects:

 AddTrail
 EditTrail
 Shared

Now we can move the AddTrailEndpoint.cs file into the AddTrail folder. Then we can
move the UploadTrailImageEndpoint.cs file into the Shared folder. We’re now ready
to add the GetTrailEndpoint and EditTrailEndpoint.

 Let’s start with the GetTrailEndpoint. We’ll add that in the new EditTrail
directory with the following code.

public class GetTrailEndpoint :

➥BaseAsyncEndpoint.WithRequest<int>.WithResponse<GetTrailRequest.Response>
{
 private readonly BlazingTrailsContext _context;

 public GetTrailEndpoint(BlazingTrailsContext context)
 {
 _context = context;
 }

 [HttpGet(GetTrailRequest.RouteTemplate)]
 public override async Task<ActionResult<GetTrailRequest.Response>>
 ➥HandleAsync(int trailId, CancellationToken cancellationToken = default)
 {
 var trail = await _context.Trails
 ➥.Include(x => x.Route)
 ➥.SingleOrDefaultAsync(x => x.Id == trailId,
 ➥cancellationToken: cancellationToken);

 if (trail is null)
 {
 return BadRequest(
 ➥"Trail could not be found.");
 }

 var response = new GetTrailRequest.Response(
 ➥new GetTrailRequest.Trail(trail.Id,
 trail.Name,
 trail.Location,
 trail.Image,
 trail.TimeInMinutes,
 trail.Length,
 trail.Description,
 trail.Route.Select(ri =>
 ➥new GetTrailRequest.RouteInstruction(ri.Id, ri.Stage,
 ➥ri.Description))));

Listing 6.32 GetTrailEndpoint.cs

First, the requested trail is
loaded from the database.

If the trail can’t be found,
a BadRequest is returned.

176 CHAPTER 6 Forms and validation—Part 2: Beyond the basics

st
 return Ok(response);
 }
}

The endpoint first attempts to load the requested trail from the database. If this fails,
then a BadRequest is returned by the API. If the trail is loaded successfully, a new
GetTrailRequest.Response instance is returned by the API, containing the details
of the requested trail.

 Let’s move on and add the EditTrailEndpoint. This will also live in the
EditTrail folder alongside the GetTrailEndpoint. The code is shown in the follow-
ing listing.

public class EditTrailEndpoint :

➥BaseAsyncEndpoint.WithRequest<EditTrailRequest>.WithResponse<bool>
{
 private readonly BlazingTrailsContext _database;

 public EditTrailEndpoint(BlazingTrailsContext database)
 {
 _database = database;
 }

 [HttpPut(EditTrailRequest.RouteTemplate)]
 public override async Task<ActionResult<bool>>
 ➥HandleAsync(EditTrailRequest request,
 ➥CancellationToken cancellationToken = default)
 {
 var trail = await _database.Trails
 ➥.Include(x => x.Route)
 ➥.SingleOrDefaultAsync(x => x.Id == request.Trail.Id,
 ➥cancellationToken: cancellationToken);

 if (trail is null)
 {
 return BadRequest("Trail could not be found.");
 }

 trail.Name = request.Trail.Name;
 trail.Description = request.Trail.Description;
 trail.Location = request.Trail.Location;
 trail.TimeInMinutes = request.Trail
 ➥.TimeInMinutes;
 trail.Length = request.Trail.Length;
 trail.Route = request.Trail.Route.Select(
 ➥ri => new RouteInstruction
 {
 Stage = ri.Stage,
 Description = ri.Description,
 Trail = trail
 }).ToList();

Listing 6.33 EditTrailEndpoint.cs

If the trail is found, a new
GetTrailRequest.Response instance is
returned containing the trail’s details.

The trail to edit is loaded
from the database.

If the trail can’t be
found, a BadReque
is returned.

Otherwise, the
trail is updated
with the details
from the request.

1776.4 Updating the form to allow editing

s

 if (request.Trail.ImageAction == ImageAction.Remove)
 {
 System.IO.File.Delete(Path.Combine(
 ➥Directory.GetCurrentDirectory(), "Images",
 ➥trail.Image!));
 trail.Image = null;
 }

 await _database.SaveChangesAsync(cancellationToken);

 return Ok(true);
 }
}

The endpoint starts by retrieving the trail to edit from the database. If the trail can’t
be found, then a BadRequest is returned. Otherwise, the trail is updated with the
details contained in the request. If the ImageAction is set to Remove, the existing
trail image is deleted from the filesystem on the server and the Image property is
cleared.

 We just need to make a small addition to the UploadTrailImageEndpoint, and
then we’re finished. To handle the updating of a trail image, we need to update the
code to remove an existing image if one exists. The update is shown in the following
listing. Some existing code is shown above and below the new code, to show where it
should be inserted.

await image.SaveAsJpegAsync(saveLocation, cancellationToken:
cancellationToken);

if (!string.IsNullOrWhiteSpace(trail.Image))
{
 System.IO.File.Delete(Path.Combine(Directory
 ➥.GetCurrentDirectory(), "Images", trail.Image));
}

trail.Image = filename;
await _database.SaveChangesAsync(cancellationToken);

The new code checks if the trail the new image belongs to already has an image. If it
does, then that image is deleted from the filesystem. And we’re done! We can now give
everything a test to make sure the editing works as expected.

6.4.4 Testing the edit functionality

We will have to do a bit of manual intervention to check that our edit logic is function-
ing correctly. This is because the rest of the site isn’t loading trails from the database
yet. That functionality is added in appendix B.

 First, add a new trail to the application, or if you already have one, then you can
use that. Next, we’ll open the trails table in the database and find the trail ID. If you’re

Listing 6.34 UploadTrailImageEndpoint.cs

If the ImageAction is set
to Remove, the physical
file is removed from disk
and the Image property i
set to an empty string.

Checks if the trail the
image belongs to already
has an existing image

If the trail has an
existing image, remove
it from the filesystem.

178 CHAPTER 6 Forms and validation—Part 2: Beyond the basics
following along and using a SQLite database, you can use a tool called DB Browser for
SQLite (https://sqlitebrowser.org) to do this.

 Once you have the trail ID, go to the running application in your browser and
update the URL to https:/./localhost:[Port]/edit-trail/[TrailID]. You
will need to add in the port your application is running on, as well as the trail ID.
Then press Enter to load the page. If all has gone well, you should be looking at the
trail details as shown in figure 6.11.

Figure 6.11 The trail form in update mode displaying data for an existing trail

As you can see, the title of the page is telling us we’re updating a trail and what that
trail is. Each section of the form is showing the data that was entered originally. At this
point, feel free to update any details and ensure they’re saved.

 Remember, the rest of the app is still using our hardcoded test data. It will need to
be updated to use the new API we’ve built. The work to do that is covered in appen-
dix B; the coming chapters will assume that work has been completed.

The existing
trail details
have been
loaded.

The heading shows the trail being edited.

https://sqlitebrowser.org

179Summary
Summary
 While Blazor Input components output default validation class names, it is pos-

sible to customize them by providing a custom FieldCssClassProvider.
 If using a custom FieldCssClassProvider, it must be registered with the

EditContext.
 Blazor provides an out-of-the-box component called InputBase<T> as a start-

ing point for creating custom input components.
 A type parameter must be specified when inheriting from InputBase<T>.

When binding model properties to the component, they must match the type
parameter.

 When inheriting from InputBase<T> an implementation must be provided
for the TryParseValueFromString method; however, it may not be used.

 There are two properties provided by InputBase<T> to update the model
value bound to a custom input component: CurrentValueAsString and
CurrentValue.

 InputFile is a component included with Blazor for working with files in
forms.

 The bind directive isn’t used when working with InputFile. Instead, a han-
dler must be provided for the component’s OnChange event.

 The OnChange event provides its handler with InputFileChangeEventArgs,
which contains the file(s) selected by the user along with the total count of files
selected.

 By default, a maximum of 10 files can be selected by the user—selecting more
will result in the component throwing an exception. However, the maximum
limit value can be modified.

 A selected file is represented as an IBrowserFile, which contains a method
called OpenReadStream that allows the file’s contents to be read.

Creating more
reusable components
Reusability is one of the compelling reasons for using components. They allow us
to define chunks of markup and logic that can be reused by simply referencing
them in other markup. This is an immensely powerful tool. So far, we’ve taken
advantage of this on several occasions in previous chapters:

 TrailCard component
 FormSection component
 FormFieldSet component
 SuccessAlert and ErrorAlert components

NOTE If you’re following along building the example application, you will
need to complete appendix B before starting this chapter.

In this chapter, we’re going to take reusability to the next level. We’ll learn how to
leverage templates and generics to make the ultimate reusable components. To give

This chapter covers
 Using templates to define specific regions of UI

 Enhancing templates with generics

 Sharing components using Razor class libraries
180

1817.1 Defining templates
us a practical example, we’ll be enhancing the home page of Blazing Trails with a com-
ponent that allows the user to toggle the layout between a grid and a table (figure 7.1).

Figure 7.1 The home page of Blazing Trails with the final ViewSwitcher component we’ll be building
during this chapter. The component allows the user to toggle between a grid view and a table view of the
available trails.

Once we’ve built our ViewSwitcher component, we’ll finish the chapter by learning
about Razor class libraries (RCL). RCLs allow us to bundle up any common compo-
nents and share them across applications. This can be done via a project reference, or
RCLs can be packed and shipped via NuGet—just like any other .NET library.

7.1 Defining templates
Templates are a powerful tool when building reusable components. They allow us to
specify chunks of markup to be provided by the consumer, which we can then output
wherever we wish. We have already used some basic templating when we built the
FormSection and FormFieldSet components in the previous chapters. In those
components, we defined a parameter with a type of RenderFragment and a name of
ChildContent:

[Parameter] public RenderFragment ChildContent { get; set; }

This is a special convention. Defining a parameter with this specific name and type
allows us to capture whatever markup has been specified between the start and end

Grid mode Table mode

182 CHAPTER 7 Creating more reusable components
tags of the component. However, for our ViewSwitcher component, we’re going to
need something a little more advanced.

 The ViewSwitcher component allows the user to toggle between a card view and
a table view of the available trails. To make this component as reusable as possible, we
don’t want to hardcode the markup for either the grid or the table view. Instead, we
want to define these as templates that allow the consumer of the component to define
these areas for themselves.

 Let’s look at the initial markup for the ViewSwitcher component. For now, we
will create this component in the Client project under Features > Home > Shared. See
the following listing.

<div>
 <div class="mb-3 text-end">
 <div class="btn-group">
 <button @onclick="@(() =>
 ➥_mode = ViewMode.Grid)" title="Grid View" type="button"
 ➥class="btn @(_mode == ViewMode.Grid ? "btn-secondary"
 ➥: "btn-outline-secondary")">
 <i class="bi bi-grid-fill"></i>
 </button>
 <button @onclick="@(() =>
 ➥_mode = ViewMode.Table)" title="Table View" type="button"
 ➥class="btn @(_mode == ViewMode.Table ? "btn-secondary"
 ➥: "btn-outline-secondary")">
 <i class="bi bi-table"></i>
 </button>
 </div>
 </div>

 @if (_mode == ViewMode.Grid)
 {
 @GridTemplate
 }
 else if (_mode == ViewMode.Table)
 {
 @TableTemplate
 }
</div>

@code {
 private ViewMode _mode = ViewMode.Grid;

 [Parameter, EditorRequired]
 public RenderFragment GridTemplate { get; set; }
 ➥= default!;
 [Parameter, EditorRequired]
 public RenderFragment TableTemplate { get; set; }
 ➥= default!;

 private enum ViewMode { Grid, Table }
}

Listing 7.1 ViewSwitcher.razor: Initial code

The two buttons
allow the user to

toggle between the
two views offered by

the component.

Specifies where the markup provided
by the consumer for the
GridTemplate should be output

Specifies where the markup
provided by the consumer for the
TableTemplate should be output

Defines the
GridTemplate parameter

Defines the
TableTemplate parameter

The enum defines the two view modes
and avoids using magic strings.

1837.1 Defining templates
The component starts with some markup that renders two buttons. These buttons
allow the user to toggle between the two views offered by the component. To do this,
we’re setting the value of _mode to either Grid or Table. The _mode field is defined
in the code block and defaulted to Grid. The buttons also use a simple expression to
apply different CSS classes to highlight which of the modes is currently active.

 Depending on which mode is active, the component renders one of two templates
defined in the code block, GridTemplate or TableTemplate. A template is just a
parameter with a type of RenderFragment.

 We’re also going to add some styling for the component. We’ll add a new file
called ViewSwitcher.razor.scss and add the following code.

.grid {
 display: grid;
 grid-template-columns: repeat(3, 288px);
 grid-column-gap: 123px;
 grid-row-gap: 75px;
}

table {
 width: 100%;
 margin-bottom: 1rem;
 color: #212529;
 border-collapse: collapse;

 ::deep th, ::deep td {
 padding: .75rem;
 vertical-align: middle;
 }

 ::deep thead tr th {
 border-bottom: 4px solid var(--brand);
 border-top: none;
 }

 ::deep tbody tr:nth-of-type(odd) {
 background-color: rgba(0,0,0,.05);
 }
}

That is all we need for now. Let’s jump over to HomePage.razor and implement
ViewSwitcher. Then we can run the app and see what everything looks like. We’re
going to replace the current code that renders the grid of trails with the code shown
in the following listing.

<ViewSwitcher>
 <GridTemplate>

Listing 7.2 ViewSwitcher.razor.scss

Listing 7.3 HomePage.razor: Using ViewSwitcher

This class defines the styling for the
grid view.

This class defines the
styling for the table view.

Defines the markup
for the GridTemplate

184 CHAPTER 7 Creating more reusable components
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" OnSelected="HandleTrailSelected" />
 }
 </div>

 </GridTemplate>
 <TableTemplate>
 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Location</th>
 <th>Length</th>
 <th>Time</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var trail in _trails)
 {
 <tr>
 <th scope="col">@trail.Name</th>
 <td>@trail.Location</td>
 <td>@(trail.Length)km</td>
 <td>@trail.TimeFormatted</td>
 <td class="text-right">
 <button @onclick="@(() =>

➥HandleTrailSelected(trail))" title="View" class="btn btn-primary">
 <i class="bi bi-binoculars"></i>
 </button>
 <button @onclick="@(() => NavManager

➥.NavigateTo($"/edit-trail/{trail.Id}"))" title="Edit"

➥class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 </td>
 </tr>
 }
 </tbody>
 </table>
 </TableTemplate>
</ViewSwitcher>

To specify the markup for a particular template, we define child elements that match
the name of the parameter. In our case, that is GridTemplate and TableTemplate.
The markup we’ve defined above for the GridTemplate and TableTemplate will be
output by ViewSwitcher where we specified the @GridTemplate and @Table-
Template expressions.

 We can now run the app and see what everything looks like. Figure 7.2 shows a
side-by-side comparison of the two views.

Defines the markup
for the TableTemplate

1857.2 Enhancing templates with generics
Figure 7.2 Grid and table views offered by the ViewSwitcher component

That’s great! We now have the initial version of the component in place. Next, we’re
going to introduce generics to ViewSwitcher.

7.2 Enhancing templates with generics
Currently, our component is working well. It allows us to define the markup for the
table and grid views and for the user to toggle between them. However, I think we can
improve things a bit. Right now, we must define a lot of markup in the HomePage
when we’re using the component. We’re defining a div with a class of .grid around a
foreach block in the grid template. Then for the table template, we’re providing the
entire markup for the table.

 As we know we’re going to be displaying a grid or a table, we can bake some of the
boilerplate markup into the component. Then when we use the component, we only
have to specify the markup and data specific to that usage. To do this, we will intro-
duce generics into our ViewSwitcher component. The following listing shows the
updated code.

@typeparam TItem
// code omitted
@if (_mode == ViewMode.Grid)
{
 <div class="grid">
 @foreach (var item in Items)
 {
 @GridTemplate(item)
 }
 </div>
}

Listing 7.4 ViewSwitcher.razor: Updated to use generics

Grid mode Table mode

View toggle

A type parameter is specified
using the typeparam directive.

We now only require the header cells to be
specified when using the component, rather
than all the markup for the head of the table.

186 CHAPTER 7 Creating more reusable components
else if (_mode == ViewMode.Table)
{
 <table>
 <thead>
 <tr>
 @HeaderTemplate
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Items)
 {
 <tr>
 @RowTemplate(item)
 </tr>
 }
 </tbody>
 </table>
}
// code omitted
@code {
 private ViewMode _mode = ViewMode.Grid;

 [Parameter, EditorRequired]
 public IEnumerable<TItem> Items { get; set; }
 ➥= default!;
 [Parameter, EditorRequired]
 public RenderFragment<TItem> GridTemplate { get;
 ➥set; } = default!;
 [Parameter, EditorRequired]
 public RenderFragment HeaderTemplate { get; set; }
 ➥= default!;
 [Parameter, EditorRequired]
 public RenderFragment<TItem> RowTemplate { get;
 ➥set; } = default!;
 // code omitted
}

We start by introducing a type parameter to the component. We do this using the
@typeparam directive. Once we do this, we can reference the type parameter when
defining our template parameters in the code block. We’re now stating that the
GridTemplate and RowTemplate will contain items of type TItem. When we invoke
these RenderFragments in the markup section, we can pass in an object of type
TItem. These items are coming from the new Items parameter we’ve created. We’ll
see the benefit of this in more detail in a second, when we update the HomePage, but
by defining our template parameters with a type, we’ll be able to access properties of
that type when defining the template.

 Let’s go and update the HomePage to work with the changes we’ve made to
ViewSwitcher. The updated code for HomePage.razor is shown in the following
listing.

We now require only the header cells to be
specified when using the component, rather
than all the markup for the head of the table.

Defining RenderFragments
with a type parameter
allows the consumer to use
properties of that type
when defining a template.

The component now accepts a list
of items to be displayed.

1877.2 Enhancing templates with generics

<ViewSwitcher Items="_trails">
 <GridTemplate>
 <TrailCard Trail="context"
 ➥OnSelected="HandleTrailSelected" />
 </GridTemplate>
 <HeaderTemplate>
 <th>Name</th>
 <th>Location</th>
 <th>Length</th>
 <th>Time</th>
 <th></th>
 </HeaderTemplate>
 <RowTemplate>
 <th scope="col">@context.Name</th>
 <td>@context.Location</td>
 <td>@(context.Length)km</td>
 <td>@context.TimeFormatted</td>
 <td class="text-right">
 <button @onclick="@(() =>
 ➥HandleTrailSelected(context))" title="View"
 ➥class="btn btn-primary">
 <i class="bi bi-binoculars"></i>
 </button>
 <button @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{context.Id}"))"
 ➥title="Edit" class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 </td>
 </RowTemplate>
</ViewSwitcher>

The list of trails is now passed into the ViewSwitcher via the Items parameter. This
means we no longer need to worry about defining foreach loops in various tem-
plates, like before. This has tidied up the GridTemplate a lot. We need to define only
the markup for an individual item now.

 As the GridTemplate is defined as RenderFragment<T>, we can access any
properties of T in our template. We access these via a special parameter called con-
text. As the TrailCard component needs an instance of a Trail, we can just pass
context to the Trail parameter. The RowTemplate shows accessing properties of T
to an even greater extent.

 The other change we made was to add in a HeaderTemplate so we could define
the columns of our table without all the extra boilerplate markup we had before. As
you can see, we need to define only the individual cells now. This reduces the amount
of code we need to write considerably.

Listing 7.5 HomePage.razor: Replace existing ViewSwitcher code

The list of trails is now passed into the
ViewSwitcher rather than having to

define foreach loops in the templates.
The GridTemplate is now cleaner,

as we no longer need to define
the grid and a foreach loop.

The header template allows us
to define the columns our table
needs, but without all the
boilerplate we had before.

In the template that uses
RenderFragment<T>, we can

now access properties of the object
through a variable called context.

This allows loads of flexibility when
building our markup.

188 CHAPTER 7 Creating more reusable components
 This is looking great, but there is one other small improvement we can make to
help the readability of our code—the context parameter. If we were scanning over a
component, we would have to pause for a second to understand what context meant in
this scenario. In our case, context is a Trail. Wouldn’t it be great if it were just
called trail instead? I think so. And the great news is, we can name it whatever we
like! The following listing shows the ViewSwitcher on the HomePage with a
renamed context parameter.

<ViewSwitcher Items="_trails">
 <GridTemplate Context="trail">
 <TrailCard Trail="trail"
 ➥OnSelected="HandleTrailSelected" />
 </GridTemplate>
 <HeaderTemplate>
 <th>Name</th>
 <th>Location</th>
 <th>Length</th>
 <th>Time</th>
 <th></th>
 </HeaderTemplate>
 <RowTemplate Context="trail">
 <th scope="col">@trail.Name</th>
 <td>@trail.Location</td>
 <td>@(trail.Length)km</td>
 <td>@trail.TimeFormatted</td>
 <td class="text-right">
 <button @onclick="@(() =>
 ➥HandleTrailSelected(trail))" title="View"
 ➥class="btn btn-primary">
 <i class="bi bi-binoculars"></i>
 </button>
 <button @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{trail.Id}"))"
 ➥title="Edit" class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 </td>
 </RowTemplate>
</ViewSwitcher>

We can rename the context parameter using the Context attribute on a template.
This is available only when the template is defined as RenderFragment<T>. Once
renamed, the new name can be used to refer to the object being displayed in the tem-
plate. As you can see, this has made the code far more readable and easier to under-
stand at a glance.

 We can take this one step further. We can rename the context parameter at
the component level, and all the templates will automatically inherit the name
(listing 7.7).

Listing 7.6 HomePage.razor: Rename context variable

The context parameter
can be renamed using
the Context attribute.

Once renamed, the
new name can be

used within the
template to refer

to the object.

1897.3 Sharing components with Razor class libraries

<ViewSwitcher Items="_trails" Context="trail">
 <GridTemplate>
 <TrailCard Trail="trail"
 ➥OnSelected="HandleTrailSelected" />
 </GridTemplate>
 <HeaderTemplate>
 <th>Name</th>
 <th>Location</th>
 <th>Length</th>
 <th>Time</th>
 <th></th>
 </HeaderTemplate>
 <RowTemplate>
 <th scope="col">@trail.Name</th>
 <td>@trail.Location</td>
 <td>@(trail.Length)km</td>
 <td>@trail.TimeFormatted</td>
 <td class="text-right">
 <button @onclick="@(() =>
 ➥HandleTrailSelected(trail))" title="View"
 ➥class="btn btn-primary">
 <i class="bi bi-binoculars"></i>
 </button>
 <button @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{trail.Id}"))"
 ➥title="Edit" class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 </td>
 </RowTemplate>
</ViewSwitcher>

By renaming the context parameter at the component level, we can remove the indi-
vidual names from each template.

7.3 Sharing components with Razor class libraries
In this final section, we’re going to cover how we can share components between
applications. It could be that you’re looking to build up a library of common compo-
nents you use across all your applications. Or maybe you’re looking to open source a
cool Blazor component you’ve created. No matter what your intent, the way to share
Blazor components is via a Razor class library (RCL).

 RCLs might sound familiar if you’ve been in the ASP.NET space for a while.
They’re not new and, historically, have been used to share Razor Pages, as well as mod-
els, views, and controllers for MVC applications. But now we can also use them to
share Blazor components. Let’s add a new RCL to our applications so we can learn
how they work.

 Using the command line, navigate to the folder that contains the solution file for
Blazing Trails. Then run the following commands:

Listing 7.7 HomePage.razor: Rename context at the component level

The context parameter is
renamed at the component level.

Once renamed,
the new name
can be used
within the
template to
refer to the
object.

190 CHAPTER 7 Creating more reusable components
dotnet new razorclasslib -o BlazingTrails.ComponentLibrary
dotnet sln add

BlazingTrails.ComponentLibrary\BlazingTrails.ComponentLibrary.csproj
dotnet add BlazingTrails.Client\BlazingTrails.Client.csproj reference

BlazingTrails.ComponentLibrary\BlazingTrails.ComponentLibrary.csproj

These commands will:
1 Create a new RCL.
2 Add it to the solution.
3 Add a reference to it in the Client project.

You can also do this using Visual Studio or Rider if you prefer.
Once you’ve run those commands, switch back to your IDE. If it’s Visual Studio, it will
ask you to reload the solution. You should now see the new project in the solution
explorer as shown in figure 7.3.

As with most project types in .NET, the RCL comes with some example files. We don’t
need these, so you can delete them—except _Imports.razor. It also comes with a direc-
tory called wwwroot. If we had any static assets to ship with our RCL, such as images,
CSS, or JavaScript files, we could add them here and reference them in the host proj-
ect. But as we don’t, go ahead and delete it as well. The RCL should now contain just
the _Imports.razor file.

 Now that our library is ready, we can move the ViewSwitcher.razor and View-
Switcher.razor.scss files over from the Client project. Depending on your IDE, it may
make copies of the files rather than moving them. If this happens, be sure to delete
the originals from the Client project. The last bit of configuration we need to do is
add in the same code we did to the Client project to handle building our Sass. First,
we need to add a package.json file to the project with the following code.

{
 "scripts": {
 "sass": "sass"
 },

Listing 7.8 package.json

The new
RCL project

Figure 7.3 The new Razor class
library with its default files

Defines the script that
will build the Sass files

1917.3 Sharing components with Razor class libraries
 "devDependencies": {
 "sass": "1.28.0"
 }
}

The package.json file defines a single script that will be called to build the Sass in the
project. It also defines the dependency on the Sass package that is used in that script.
Now, open the BlazingTrails.ComponentLibrary.csproj file and replace what’s there
with the following code.

<Project Sdk="Microsoft.NET.Sdk.Razor">
 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <NpmLastInstall>node_modules/.last-install
 ➥</NpmLastInstall>
 </PropertyGroup>

 <ItemGroup>
 <SupportedPlatform Include="browser" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Components.Web"
 ➥Version="6.0.0" />
 </ItemGroup>

 <Target Name="CheckForNpm"
 ➥BeforeTargets="RunNpmInstall">
 <Exec Command="npm --version" ContinueOnError="true">
 <Output TaskParameter="ExitCode" PropertyName="ErrorCode" />
 </Exec>
 <Error Condition="'$(ErrorCode)' != '0'"
 ➥Text="NPM is required to build this project." />
 </Target>

 <Target Name="RunNpmInstall"
 ➥BeforeTargets="CompileScopedScss" Inputs="package.json"
 ➥Outputs="$(NpmLastInstall)">
 <Exec Command="npm install" />
 <Touch Files="$(NpmLastInstall)" AlwaysCreate="true" />
 </Target>

 <Target Name="CompileScopedScss"
 ➥BeforeTargets="Compile">
 <ItemGroup>
 <ScopedScssFiles Include="**/*.razor.scss" />
 </ItemGroup>

 <Exec Command="npm run sass –
 ➥%(ScopedScssFiles.Identity) %(relativedir)%(filename).css" />
 </Target>
</Project>

Listing 7.9 BlazingTrails.ComponentLibrary.csproj

Defines a dev dependency on the Sass
package. This is used in the earlier
script to build any Sass files.

Stores when the NPM
install was last run

Checks if the NPM is installed
and errors if it’s not found

Runs the NPM install
if the package.json
has been modified
since the last time the
NPM install was runCompiles any SCSS files

within the project

Finds all SCSS files
in the project

192 CHAPTER 7 Creating more reusable components
I will skim over this, as we’ve already covered what this does in chapter 3. But as a
quick recap, we’ve added three tasks that will run when the project is built. The first
will check if NPM is installed on the machine and produce an error if it’s not found.
The second will run NPM install if the package.json has been updated since the last
time it was run—say, if we’d updated a package version or added a dependency. The
third task calls the script defined in package.json to build the Sass files in the project.

 That is all the configuration we need to do in the RCL. We can now switch back to
the Client project and add a new using statement to the main _Imports.razor in the
root of the project. Add the following line to the file:

@using BlazingTrails.ComponentLibrary

At this point, we can run a build of the solution and run the application. Everything
should be working as it was before.

 The eagle-eyed among you may be wondering how the styles for our View-
Switcher component are still working. They’re now in another project, and we’ve
not added any kind of reference to them. Well, that’s because Blazor has already done
that for us. Let’s understand what’s happened.

 With the application running, open the browser developer tools and move to the
Source tab. I’m using the latest version of Microsoft Edge, so this may be slightly dif-
ferent in other browsers. You should see what’s shown in figure 7.4.

Figure 7.4 Blazor automatically bundles any scoped CSS from an RCL and makes that
bundle available via a framework-generated folder called _content. The RCL bundle
is then automatically added to the main styles bundle created by the host application.

Any scoped CSS files found in an RCL are automatically bundled up in the same way
they are in a Blazor project. This bundle is then exposed through a framework-
generated folder called _content. The bundle from the RCL is also automatically
imported into the main CSS bundle of the host application.

Blazor automatically bundles any scoped CSS files in RCLs and makes the bundle
available to the host application via a framework-generated folder called _content.

The scoped CSS from RCLs is automatically imported into
the main scoped CSS bundle created by the host application.

193Summary
Summary
 Templates are defined by creating parameters with a type of RenderFragment.
 Defining a template with the name ChildContent will capture all the markup

entered between the start and end tags of a component.
 Templates can be generically typed.
 Generically typed templates require an object of type T to be passed into them

when they are invoked.
 When providing markup for a template that is generically typed, the properties

of T are available to be used in the markup via a parameter called context.
 The context parameter can be renamed to aid readability via the Context

attribute.
 The context parameter can be renamed on a specific template or at the com-

ponent level. If done at the component level, all generic templates in the
component inherit the new name.

 Components are shared using a Razor class library.
 Razor class libraries can be packaged and shipped via NuGet, as with other

.NET libraries.
 When using scoped CSS in an RCL, it’s automatically bundled and included in

a host Blazor application.

Integrating with
JavaScript libraries
While one of the major reasons for choosing Blazor is to write our frontend applica-
tions using C# to avoid JavaScript, there are some things that can still only be done
using JavaScript. A great example of this is accessing the browser’s web storage APIs.
It’s a common requirement to store data in either local storage or session storage, but
both features can be accessed only via JavaScript code. Beyond just needing to use
some JavaScript out of necessity, there are also many fantastic, feature-packed Java-
Script libraries available that just aren’t available in C#. It makes sense to take advan-
tage of these battle-tested libraries and not reinvent the wheel when we don’t have to.

 The great news for us is that Blazor has some fantastic JavaScript interop APIs.
Using these APIs, we can call into JavaScript and also have JavaScript call into our
application. This allows us to wrap the interactions with JavaScript in either C#
classes or components. Once this is done, the rest of our application just deals with
either the C# class or the component and never needs to care about the underlying

This chapter covers
 Wrapping JavaScript libraries to work with Blazor

 Calling JavaScript functions from C#

 Calling C# methods from JavaScript
194

1958.1 Creating a JavaScript module and accessing it via a component
JavaScript call. If designed correctly, another benefit is that we can swap the JavaScript
library out at any point for another JavaScript library or even a C# library if one
becomes available.

 In this chapter, we’re going to learn about Blazor’s JavaScript APIs by implement-
ing a popular JavaScript library called Leaflet (https://leafletjs.com/) into the Blazing
Trails application. Leaflet is an open source JavaScript library used for displaying
interactive maps. We’ll use Leaflet to replace the current route instructions with a
map that shows waypoints outlining the route of the trail. Figure 8.1 shows the final
map component we’ll be building to use on the edit trail form.

Figure 8.1 The completed map component that calls the Leaflet JavaScript library to display
interactive maps

As you can see, this creates a much nicer UI for mapping out a trail. We’ll build the
map component in such a way that it can be used for both editing a set of waypoints
and displaying a read-only view of them. We can then update the drawer on the home
page that shows the trail details with the same map.

8.1 Creating a JavaScript module and accessing it via a component
We’re going to create a component called RouteMap, which will handle all the inter-
actions with Leaflet. The rest of the application will only deal with this component and
be totally ignorant of the fact that JavaScript is being called. As this component is a good

This is what the map component we’ll build
in this chapter will look like when we’re done.

https://leafletjs.com/

196 CHAPTER 8 Integrating with JavaScript libraries

e
.

candidate for reuse, it makes sense for us to add it to our BlazingTrails.Component-
Library project that we added in the last chapter. It can then be easily shared with other
applications in the future, if required.

 The first step in wrapping Leaflet is to write our own JavaScript code that initializes
the library. We’ll then call this from our RouteMap component. Originally, Blazor’s
JavaScript interop APIs required that functions be added to the global scope for them
to be invoked by an application. While this worked, it’s not considered a good practice
to pollute the global scope with random functions. There is also an increased risk that
the name of your function will collide with another.

 Since .NET 5, Blazor has an improved option for working with JavaScript—Java-
Script isolation. This method doesn’t require functions to be added to the global
scope and fits in much better with modern JavaScript best practices. This is the
method we will be using to wrap Leaflet.

 Another Blazor feature we’ll use to build our Map component is collocated Java-
Script, introduced in .NET 6. This feature allows us to place JavaScript files alongside
the components that use them rather than having to place them in a wwwroot folder,
as we would with other static assets. I really like this, as it means less jumping between
folders and makes understanding the code base a bit easier.

 We’ll start by adding a new folder to the root of the BlazingTrails.Component-
Library project called Map. Then we’ll add a new JavaScript file inside it called Route-
Map.razor.js with the code shown in listing 8.1. It’s important that the JavaScript file
shares the same name as the component that uses it, just with a .js extension. Blazor
requires this naming convention when using collocated JavaScript files.

export function initialize(hostElement) {
 hostElement.map = L.map(hostElement)
 ➥.setView([51.700, -0.10], 3);

 L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 attribution: '©
 ➥OpenStreetMap
 ➥contributors',
 maxZoom: 18,
 opacity: .75
 }).addTo(hostElement.map);

 hostElement.waypoints = [];
 hostElement.lines = [];

 hostElement.map.on('click', function (e) {
 let waypoint = L.marker(e.latlng);
 waypoint.addTo(hostElement.map);
 hostElement.waypoints.push(waypoint);

Listing 8.1 RouteMap.razor.js

The initialize function takes a single
parameter that is a reference to the
element the map should be rendered in.

Leaflet is initialized on
the hostElement.

Adds a layer that displays a
copyright message in the
bottom right of the map

This hooks up a handler for the click
event exposed by the map. When the
map is clicked, the handler will add a
waypoint and if there is more than on
waypoint, add a line connecting them

1978.1 Creating a JavaScript module and accessing it via a component
 let line = L.polyline(hostElement.waypoints.map(m => m.getLatLng()),
 ➥{ color: 'var(--brand)' }).addTo(hostElement.map);
 hostElement.lines.push(line);
 });
}

The initialize function takes a single parameter, hostElement. This is a reference
to the element where Leaflet should render the map. We’re going to pass this in from
our Blazor component. The function is also marked with the export keyword. This is
what’s going to allow us to take advantage of Blazor’s JavaScript isolation feature.

The first operation the initialize function performs is to render the map on the
host element. Next, a layer is added, which contains some copyright information
about the map tiles being used. Finally, a handler is added for the map’s onclick
event. This will add a new waypoint wherever the user clicks. Once there is more than
one waypoint, it will also draw a line between them.

 Now we can turn our attention to creating the RouteMap component. Add a new
component to the Map folder called RouteMap.razor with the following code.

@using Microsoft.JSInterop
@inject IJSRuntime JSRuntime
@implements IAsyncDisposable

<div class="map-wrapper">
 <div style="height: @(Height); width:@(Width);"
 ➥@ref="_map"></div>
</div>

@code {
 private ElementReference _map;
 private IJSObjectReference? _routeMapModule;

What is JavaScript isolation in Blazor?
A JavaScript module (http://mng.bz/gwg8) is essentially a JavaScript file that exports
functions, consts, or anything that makes sense to export. Blazor’s JavaScript isola-
tion feature allows JavaScript modules to be loaded on demand rather than be con-
stantly present.

It means that the consuming application doesn’t have to add a reference to the
JavaScript file. Instead, the framework will download the file if required. This is espe-
cially useful when writing Blazor libraries that use JavaScript, as the consumers don’t
have to add script tags in their host pages. This also means that if a user doesn’t
access a component that uses the module, then the file will never be downloaded.

Listing 8.2 RouteMap.razor

Using the ref directive, an
element reference is captured
that can be passed to JavaScript.

http://mng.bz/gwg8

198 CHAPTER 8 Integrating with JavaScript libraries
 [Parameter] public string Height { get; set; } = "500px";
 [Parameter] public string Width { get; set; } = "1000px";

 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 _routeMapModule = await JSRuntime.InvokeAsync
 ➥<IJSObjectReference>("import", "./_content/
 ➥BlazingTrails.ComponentLibrary/Map/RouteMap.razor.js");
 await _routeMapModule
 ➥.InvokeVoidAsync("initialize", _map);
 }
 }

 async ValueTask IAsyncDisposable.DisposeAsync()
 {
 if (_routeMapModule is not null)
 {
 await _routeMapModule.DisposeAsync();
 }
 }
}

The RouteMap component defines a small amount of markup, including a div that
we’re capturing an element reference to. We will pass this reference to our JavaScript
function, and Leaflet will render the map inside of it.

 We’re using the OnAfterRenderAsync life cycle method to work with our Java-
Script code. It’s important to use this method whenever you’re working with JavaScript,
as it will only ever be called after the component has been rendered and the DOM is in
place. As JavaScript code usually operates on the DOM, using an earlier life cycle
method may result in errors.

 When the component is first rendered, we’re using the IJSRuntime abstraction to
load our routeMap module and capture a reference to it. This line of code also serves
as the trigger for the “on demand” loading of the JavaScript file for the JavaScript iso-
lation feature. As this code is in a Razor class library, we need to use a special path to
reference the physical file. This path is broken down as follows:

./content/{project name}/{path to file}

In our case, the project name where the file resides is BlazingTrails.Component-
Library, and because we’re using the collocated JavaScript feature, the last segment is
just the path to the file from the root of the project:

./_content/BlazingTrails.ComponentLibrary/Map/RouteMap.razor.js

Once we’ve loaded our module, we then call the initialize function to render the
map. We do this via the InvokeVoidAsync method. This method allows us to call
into JavaScript functions that don’t return a value. There is also another method,
InvokeAsync, that does allow values to be returned from the JavaScript side.

The IJSRuntime interface is used
to import the routeMap

JavaScript module.

The initialize function exported by the
routeMap module is called, passing in

the element reference
where the map should

be rendered.

Implements IAsyncDisposable
to clean up the module
reference when the
component is destroyed

1998.1 Creating a JavaScript module and accessing it via a component
 The final thing we do is a little housekeeping by implementing the IAsync-
Disposable interface. This allows the reference to the JavaScript module to be dis-
posed of correctly when the component is destroyed.

 At this point, we have the initial version of our RouteMap component. It can call
into our JavaScript module and initialize the Leaflet map in the element we pass it to.
We just need to test it out. To do this, we’ll implement the new RouteMap component
in the TrailForm component.

8.1.1 Testing out the RouteMap component

Before we can update the TrailForm with the new RouteMap component, we need
to add references to the Leaflet library in the index.html page. We’ll add two things—
a link to Leaflet’s CSS file and a script tag for Leaflet itself.

 In the head tag of the wwwroot > index.html file in the Client project, add the fol-
lowing line under the link to the Bootstrap icon’s CSS:

<link rel="stylesheet" href="https://unpkg.com/leaflet@1.7.1/dist/leaflet.css"
 integrity="sha512-xodZBNTC5n17Xt2atTPuE1HxjVMSvLVW9ocqUKLsCC5CXdbqCmbl
 AshOMAS6/keqq/sMZMZ19scR4PsZChSR7A=="
 crossorigin="" />

We can then add the following script tag directly after the blazor.webassembly.js file or
the blazor.server.js file if you’re using Blazor Server:

<script src="https://unpkg.com/leaflet@1.7.1/dist/leaflet.js"
 integrity="sha512-XQoYMqMTK8LvdxXYG3nZ448hOEQiglfqkJs1NOQV44cWnUrBc8
 PkAOcXy20w0vlaXaVUearIOBhiXZ5V3ynxwA=="
 crossorigin=""></script>

Now we can add the new RouteMap component to the TrailForm (Features >
ManageTrails > Shared). We’ll remove all the code inside of the Route FormSection
and add a reference to the RouteMap component. The resulting section looks like
this:

<FormSection Title="Route"
 HelpText="Route instructions are a guide for the trail. This
 ➥helps hikers new to the trail stay on track.">
 <RouteMap Width="100%" />
</FormSection>

We’ll also need to add a using statement for the RouteMap component. We add this
at the top of the TrailForm component rather than in an _Imports.razor file, as we
only need this temporarily:

@using BlazingTrails.ComponentLibrary.Map

We can now run the app and check that everything is working correctly. If all has gone
to plan, you should see a map rendered in the Route section.

 You can interact with the map at this point. Using your mouse, you can click and
drag to move around and use the mouse wheel or the Plus and Minus button in the

200 CHAPTER 8 Integrating with JavaScript libraries
top left to zoom in and out. You can also click anywhere and drop a waypoint. If you
add a second waypoint, you will see a line is drawn between them (figure 8.2).

 Now that we’ve verified that our initial RouteMap component works, we will add
one additional feature before we move on to the next section: the ability to delete a
waypoint.

8.1.2 Calling JavaScript functions from C# and returning a response

When we initialized the map, we called into JavaScript using the InvokeVoidAsync
method, which doesn’t require a value to be returned. But what if we wanted to return
a value from our JavaScript call? In that case, we can use the InvokeAsync<T>
method. To learn about this, we will add the ability to delete a waypoint from the map
and return a message containing details about the deleted waypoint.

 The ability to delete waypoints is very important. As you may have already discov-
ered while testing out the map, it’s easy to drop a waypoint in the wrong place or just
in error. We will add a button that will allow the user to delete the last waypoint they
dropped. Continuing to click the button will continue to delete waypoints until they
are all gone.

 Back in our JavaScript file, RouteMap.razor.js, we will add a new function called
deleteLastWaypoint. The code for the function is shown in listing 8.3.

Waypoints joined by lines
mark the route for a trail.

Figure 8.2 Clicking on the map will drop a waypoint. For each additional waypoint dropped, a line
will be drawn, linking them together.

2018.1 Creating a JavaScript module and accessing it via a component
export function deleteLastWaypoint(hostElement) {
 if (hostElement.waypoints.length > 0) {
 let lastWaypoint = hostElement.waypoints[
 ➥hostElement.waypoints.length - 1];
 hostElement.map.removeLayer(lastWaypoint);
 hostElement.waypoints.pop();

 if (hostElement.lines.length > 0) {
 let lastLine = hostElement.lines[
 ➥hostElement.lines.length - 1];
 lastLine.remove(hostElement.map);
 hostElement.lines.pop();

 return `Deleted waypoint at latitude
 ➥${lastWaypoint.getLatLng().lat}
 ➥longitude ${lastWaypoint.getLatLng().lng}`;
 }
 }
}

The function starts by checking if there are waypoints to be deleted. Next, it finds the
last waypoint and removes it from the map and from the list of waypoints stored on
the hostElement. Another check is then performed to see if there is a line that
needs to be deleted. This is to make sure we don’t end up with line coming from a
waypoint and not connecting to anything. Finally, we return a string that includes the
latitude and longitude of the waypoint that was deleted.

 With the JavaScript in place, we can move back to the RouteMap component.
We’re going to add a button that will trigger our new delete function. The following
listing shows the new markup and method.

<div class="map-wrapper">
 <div class="controls">
 <button @onclick="DeleteLastWaypoint"
 ➥class="btn btn-secondary" title="Delete last waypoint"
 ➥type="button">
 <i class="bi bi-trash"></i>
 ➥Remove Last Waypoint
 </button>
 </div>
 <div style="height: @(Height); width:@(Width);" @ref="_map"></div>
</div>

@code {
 // Other code omitted for brevity
 public async Task DeleteLastWaypoint()
 {

Listing 8.3 RouteMap.razor.js: Delete the last waypoint

Listing 8.4 RouteMap.razor: Triggering deleteLastWaypoint

Checks to make sure there
are waypoints to be deleted

Removes the last
waypoint from the map

Checks to see if there is a line
that needs to be deleted

Removes the last
line from the map

This new div contains the Delete button.
This will be used to position the button
correctly on the map with CSS.

The Delete button triggers the
DeleteLastWaypoint method.

202 CHAPTER 8 Integrating with JavaScript libraries
 if (_routeMapModule is not null)
 {
 var message = await _routeMapModule
 ➥.InvokeAsync<string>("deleteLastWaypoint", _map);
 Console.WriteLine(message);
 }
 }
}

We start by adding some new markup, which is a div containing the Delete button.
The Delete button has an onclick event that calls the new DeleteLastWaypoint
method. This method uses the reference to the routeMap JavaScript module to exe-
cute the deleteLastWaypoint function using the InvokeAsync<T> method. We
set the type parameter to a string, as that is what we’re expecting back from the call.
The returned message is then output to the browser console.

 Before we test out our new delete feature, we need to add a small bit of CSS to
position the button correctly on the map. We will add a new file called Route-
Map.razor.scss in the Map folder of the ComponentLibrary project. Then add the fol-
lowing code.

.map-wrapper {
 position: relative;

 .controls {
 position: absolute;
 bottom: 10px;
 left: 10px;
 z-index: 1000;
 }
}

The CSS is quite simple; we define a class, which is used on the container element for
the map. We set its position property to relative. This allows us to set the position of
any child elements relative to the parent. Then we define a class that is applied to the
div containing the Delete button we just created. It will position that element in the
bottom left corner of the map, 10 pixels away from the edges. By setting the z-index
property to 1,000, we ensure that it sits on top of all other elements.

We can now run the application and check our work. Navigating to the add trail
form, you should now see a Delete button in the bottom left corner of the map (figure
8.3). Clicking it at this point should do nothing, but if you add a few waypoints and
click the button, you should see them being removed. If you open the browser con-
sole, you should see messages describing each waypoint that was removed.

Listing 8.5 RouteMap.razor.scss

The InvokeAsync method executes
the deleteLastWaypoint JavaScript

function, returning a string.
The string returned from

deleteLastWaypoint is output to
the browser console.

We set the position property of the main div
containing the map as relative. This will allow us
to position child elements relative to the parent.

This is the class for the div containing the
Delete button. We set its position property
to absolute and then set its position to be
in the bottom left corner of the parent.

2038.2 Calling C# methods from JavaScript

Figure 8.3 The new Delete button is positioned on the map and the message returned
from JavaScript is displayed in the console.

NOTE If you’re using Blazor Server rather than Blazor WebAssembly, you won’t
see the message in the browser console. Instead, it will be in the web server out-
put. This is displayed either in the Output > Web Server window in Visual Studio
or at the command prompt if running the app using the .NET CLI.

The RouteMap component is coming along nicely. We can add waypoints, connect
them with a line, and remove them if necessary. However, right now all the data
regarding the waypoints is being held in JavaScript. We need to get access to this infor-
mation in our C# code so we can save the route into the database when the form is
submitted. That’s what we’ll tackle next.

8.2 Calling C# methods from JavaScript
When working with either custom JavaScript functions or with JavaScript libraries,
there will come a time when you need to call methods in your Blazor application to
invoke some logic or to retrieve or pass some data. Just as with calling out to Java-
Script, Blazor has built-in APIs that we can leverage from our JavaScript code to call
C#. We’re going to use those APIs in Blazing Trails to pass the position of each way-
point dropped on the map back to our RouteMap component. Once we have that
data in our C# code, we can save it along with the rest of the trail data.

Message returned from JavaScript displaying in the console

New Delete Waypoint button

204 CHAPTER 8 Integrating with JavaScript libraries

i

 In order to call a method on a component from JavaScript, we need to create a ref-
erence to that component and pass it into a JavaScript function. Once that reference
object is in the function, we can use it to call methods on that component instance.
Blazor has a special class for doing this called DotNetObjectReference<T>. Let’s
implement it in our RouteMap component. We’ll update the RouteMap component
with the following code.

@implements IDisposable
@code {
 private DotNetObjectReference<RouteMap>
 ➥_routeMapReference;
 // Other code omitted for brevity
 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 _routeMapModule = await JSRuntime
 ➥.InvokeAsync<IJSObjectReference>("import",
 ➥"./_content/BlazingTrails.ComponentLibrary/Map/
 ➥RouteMap.razor.js");
 _routeMapReference =
 ➥DotNetObjectReference.Create(this);

 await _routeMapModule.InvokeVoidAsync("initialize", _map,

_routeMapReference);
 }
 }

 [JSInvokable]
 public void WaypointAdded(decimal latitude, decimal longitude)
 => Console.WriteLine(
 ➥$"Added Waypoint - Latitude: {latitude},
 ➥Longitude {longitude}");
 // Other code omitted for brevity
 void IDisposable.Dispose()
 => _routeMapReference?.Dispose();
}

First, we’re creating a new private field that will hold the reference to the instance of
the RouteMap component. We then use the Create method of the DotNetObject-
Reference class to create a reference to the component that we can pass to

Listing 8.6 RouteMap.razor: Using DotNetObjectReference<T>

This new private field holds the
reference to the component.

An object reference
s created by calling
the Create method

and passing it to
 the instance of the

component.

The call to
initialize the

JavaScript function
is updated to pass

the reference to
the RouteMap

component.

The new WaypointAdded method is
decorated with the [JSInvokable] attribute,
which allows it to be called from JavaScript.

Whenever a waypoint is added to the
map, the longitude and latitude of
the marker will be passed to our
component from JavaScript and
written to the browser console.

We implement IDisposable
so we can properly dispose
of the routeMapReference.

2058.2 Calling C# methods from JavaScript
JavaScript. Then we add this reference as an additional argument when calling the
initialize JavaScript function.

 Next, we’ve added a new method called WaypointAdded. It’ll be called from our
JavaScript code whenever a new waypoint is added, passing in its longitude and
latitude—which we’ll output in the browser console. A key point here is that this
method is decorated with the [JSInvokable] attribute. This allows the method to
be called from JavaScript. Without this attribute, attempting to invoke it from Java-
Script will cause an error.

Finally, we implement the IDisposable interface so we can correctly dispose of
the _routeMapReference when the component is destroyed.

With the changes to the RouteMap component in place, we can then modify the
RouteMap.razor.js file to call the WaypointAdded method. The following listing
shows the updated code.

export function initialize(hostElement, routeMapComponent) {
 // Other code omitted for brevity
 hostElement.map.on('click', function (e) {
 let waypoint = L.marker(e.latlng);
 waypoint.addTo(hostElement.map);
 hostElement.waypoints.push(waypoint);
 let line = L.polyline(hostElement.waypoints.map(m => m.getLatLng()),
 ➥{ color: 'var(--brand)' }).addTo(hostElement.map);
 hostElement.lines.push(line);

 routeMapComponent.invokeMethodAsync(
 ➥'WaypointAdded', e.latlng.lat, e.latlng.lng);
 });
}

First, we update the signature of the initialize function. We’re adding an extra
parameter, routeMapComponent, which holds the reference to the RouteMap com-
ponent instance that called the function. This object gives us access to a function
called invokeMethodAsync. In our click event handler, we use this to call the Way-
pointAdded method, passing in the latitude and longitude of the waypoint.

 That is everything we need. We can now run the application and check our work
(figure 8.4). If all has gone to plan, you should see the latitude and longitude output
into the browser console whenever you click to add a waypoint on the map.

 Things are looking good! We can now access the data for each waypoint from our
C# code. Our next step is to integrate the map component into our form so we can
save the waypoints when the form is submitted.

Listing 8.7 RouteMap.razor.js: Calling component methods

The signature of the function is
updated to take the reference to

the route map component.

The invokeMethodAsync function is used
on the routeMapComponent object to

call the WaypointAdded method.

206 CHAPTER 8 Integrating with JavaScript libraries

Figure 8.4 The messages that are output to the browser console whenever a new
waypoint is added to the map.

8.3 Integrating the RouteMap component
with the TrailForm
We’ve completed most of the work needed to wrap Leaflet, so now we can focus on
integrating our RouteMap component into the TrailForm. To do this, we’ll wrap it
in a custom form control, which will allow us to apply validation and ultimately save
the waypoint data into the database along with the other details of the trail. The fol-
lowing listing shows the updates.

@code {
 // Other code omitted for brevity
 [Parameter]
 public List<LatLong> Waypoints { get; set; }
 ➥= new List<LatLong>();
 [Parameter]
 public EventCallback<LatLong> OnWaypointAdded
 ➥{ get; set; }
 [Parameter]
 public EventCallback<LatLong> OnWaypointDeleted
 ➥{ get; set; }

Listing 8.8 RouteMap.razor: Enhancements for forms integration

Whenever a new waypoint is added, a message is output
to the console containing its latitude and longitude.

This new parameter allows
us to pass a list of waypoints
into the component.

This is a new event for when
a waypoint is added.

This is a new event for when
a waypoint is deleted.

2078.3 Integrating the RouteMap component with the TrailForm
 // Other code omitted for brevity
 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {
 // other code omitted for brevity
 await _routeMapModule
 ➥.InvokeVoidAsync("initialize", _map,
 ➥_routeMapReference, Waypoints);
 }
 }

 public async Task DeleteLastWaypoint()
 {
 if (_routeMapModule is not null)
 {
 var waypoint = await _routeMapModule
 ➥.InvokeAsync<LatLong>("deleteLastWaypoint", _map,
 ➥_routeMapReference);
 await OnWaypointDeleted
 ➥.InvokeAsync(waypoint);
 }
 }

 [JSInvokable]
 public async Task WaypointAdded(decimal latitude,
 ➥decimal longitude)
 => await OnWaypointAdded
 ➥.InvokeAsync(new LatLong(latitude, longitude));
 // Other code omitted for brevity
}

We added three new component parameters. The first, Waypoints, will allow us to
pass in a list of waypoints. We will use this when editing a form to display whatever way-
points already exist. The other two, OnWaypointAdded and OnWaypointDeleted,
will allow the consumer of this component to be notified when a waypoint is added or
deleted. These new parameters work with a new type called LatLong, which we’ll look
at in a second. The call to the initialize function has been updated to pass in any
existing waypoints. We’ve also updated the DeleteLastWaypoint method to trigger
the new OnWaypointDeleted event. You’ll also notice the return type has been
changed from string to LatLong—we’ll be updating the JavaScript in a second to
return an object containing the latitude and longitude of the deleted waypoint. The
WaypointAdded method now triggers the OnWaypointAdded event instead of writ-
ing to the console.

 Let’s have a quick look at that LatLong object now. This is a record type, and we
need to add it to the ComponentLibrary project alongside the RouteMap component
in the Map folder. Create a file called LatLong.cs and add the following line to it:

public record LatLong(decimal Lat, decimal Lng);

The waypoints are passed
into the JavaScript function.

The return type for the
deleteLastWaypoint function

is updated to LatLong.

The OnWaypointDeleted event is triggered
rather than writing to the console.

The Updated WaypointAdded
method triggers the

OnWaypointAdded event.

208 CHAPTER 8 Integrating with JavaScript libraries

nts,
em

es

This is just a simple DTO and contains no logic. It just holds the coordinates for a way-
point. To finish the enhancements to the RouteMap, we need to make some updates
to the JavaScript. The following listing shows the changes.

export function initialize(hostElement,

➥routeMapComponent, existingWaypoints) {
 // other code omitted for brevity
 hostElement.waypoints = [];
 hostElement.lines = [];
 if (existingWaypoints && existingWaypoints.length > 0) {
 existingWaypoints.forEach(cord => {
 let waypoint = L.marker(cord);
 waypoint.addTo(hostElement.map);
 hostElement.waypoints.push(waypoint);
 let line = L.polyline(hostElement.waypoints
 ➥.map(m => m.getLatLng()), { color: 'var(--brand)' })
 ➥.addTo(hostElement.map);
 hostElement.lines.push(line);
 });
 }

 if (hostElement.waypoints.length > 0) {
 var waypointsGroup = new L.featureGroup(
 ➥hostElement.waypoints);
 hostElement.map.fitBounds(waypointsGroup
 ➥.getBounds().pad(1));
 }

 // other code omitted for brevity
}

export function deleteLastWaypoint(hostElement) {
 if (hostElement.waypoints.length > 0) {
 // other code omitted for brevity

 return { "Lat": lastWaypoint.getLatLng().lat,
 ➥"Lng": lastWaypoint.getLatLng().lng };
 }
}

The first change is to add the existingWaypoints parameter to the function signa-
ture, allowing us to pass in an array of existing waypoints. In the first if block, we
check to see if we have any existing waypoints. If we do, then we create markers for
each of them and any lines needed to join them together. In the second if block, if
we have existing waypoints, we use the fitBounds function from Leaflet to zoom the
map so all the waypoints are visible and the route they define is centered in the map.
Finally, we’ve updated what the deleteLastWaypoint function returns. It now
passes back an object that can be deserialized into the new LatLong C# record we
previously created.

Listing 8.9 RouteMap.razor.js: Displayed existing waypoints

The function signature has been
updated to allow existingWaypoints
to be passed in.

If there are any
existingWaypoi
we loop over th
and create a
marker for each
one and any lin
needed to join
the markers.

When there are existingWaypoints,
zoom the map so all of the waypoints
are visible and the route is centered.

Instead of returning a
string, the function now
returns an object, which
can be deserialized into a
LatLong record in C#.

2098.3 Integrating the RouteMap component with the TrailForm
 Now that the RouteMap is ready, we can create our custom Input component to
wrap it and integrate it with the form. We’ll be creating this new component in the
Shared folder of the ManageTrails feature in the Client project. Create a new com-
ponent called InputRouteMap.razor and add the following code.

@using BlazingTrails.ComponentLibrary.Map
@inherits InputBase<List<TrailDto.WaypointDto>>

<div class="@CssClass">
 <RouteMap Width="100%" OnWaypointAdded="AddWaypoint"
 ➥OnWaypointDeleted="DeleteWaypoint"
 ➥Waypoints="_waypoints" />
</div>

@code {
 private List<LatLong> _waypoints = new List<LatLong>();

 protected override void OnParametersSet()
 {
 if (CurrentValue?.Count > 0)
 {
 _waypoints.Clear();
 _waypoints.AddRange(CurrentValue
 ➥.Select(x => new LatLong(x.Latitude, x.Longitude)));
 }
 }

 protected override bool TryParseValueFromString(
 ➥string? value, out List<TrailDto.WaypointDto> result,
 ➥out string validationErrorMessage)
=> throw new NotImplementedException();

 private void AddWaypoint(LatLong waypoint)
 {
 _waypoints.Add(waypoint);
 CurrentValue?.Add(new TrailDto.WaypointDto(
 ➥waypoint.Lat, waypoint.Lng));
 }

 private void DeleteWaypoint(LatLong waypoint)
 {
 _waypoints.Remove(waypoint);
 CurrentValue?.Remove(new TrailDto.WaypointDto(
 ➥waypoint.Lat, waypoint.Lng));
 }
}

As we’re creating a custom form component, we start by inheriting from InputBase.
We specify that this component will bind to a List<TrailDto.WaypointDto>,
which we’ll set up after this. We then add the RouteMap component and handlers for

Listing 8.10 InputRouteMap.razor

Defines the type that the
component will be able
to bind to in the form

The input component sets up handlers for both
the OnWaypointAdded and OnWaypointDeleted
events and passes in any existing waypoints.

If there are existing waypoints,
convert them to a list of LatLong so

they can be passed to JavaScript.

When a new waypoint
is added, it is added to
the collection on the
form model.

When a new waypoint is
deleted, it is removed
from the collection on
the form model.

210 CHAPTER 8 Integrating with JavaScript libraries
the OnWaypointAdded and OnWaypointDeleted events, as well as pass in any exist-
ing waypoints. Using the OnParametersSet method, we check to see if there are any
existing waypoints. If there are, we convert them to a list of LatLong so they can be
passed into the RouteMap component.

 To finish up, we need to add a bit of styling. Add a new file called InputRoute-
Map.razor.scss in the Shared folder and add the following CSS class:

.is-invalid {
 border: 1px solid #dc3545;
}

When the form’s validation logic is triggered, this will add a red border to the new
Input component if the user has failed to add any waypoints to the map (figure 8.5).

Figure 8.5 Once we complete our changes, a border will be displayed around the map when the user
attempts to submit the form without adding any waypoints.

Before we add the new input to the TrailForm, we need to update the TrailDto
class (BlazingTrails.Shared > Features > ManageTrails > Shared). Currently, it expects
us to be adding route instructions. We need to update it to work with our new way-
points. We’re going to remove the Route property as well as the RouteInstruction
class, then replace them with the following two lines:

public List<WaypointDto> Waypoints { get; set; } = new List<WaypointDto>();

public record WaypointDto(decimal Latitude, decimal Longitude);

When our changes are complete, a red border will be displayed
around the map when no waypoints have been added.

2118.3 Integrating the RouteMap component with the TrailForm
We also need to update the TrailValidator. We can remove the two rules for the
Route property and replace them with the following line:

RuleFor(x => x.Waypoints).NotEmpty().WithMessage("Please add a waypoint");

We can then remove the RouteInstructionValidator class entirely, as it’s no lon-
ger required.

 While we’re in the Shared project, we can also update the GetTrailRequest
(Features > ManageTrails > EditTrail). We need to remove the RouteInstruction
record and replace it with the following Waypoint record:

public record Waypoint(decimal Latitude, decimal Longitude);

Then we can update the Trail record to use the new Waypoint record:

public record Trail(int Id, string Name, string Location, string Image, int
TimeInMinutes, int Length, string Description, IEnumerable<Waypoint>
Waypoints);

That’s all the changes needed in the Shared project. Let’s go and plug in our new
input component to the form. Then we can update our API endpoints, and we should
be good to go!

 In the TrailForm component (BlazingTrails.Client > Features > ManageTrails >
Shared), we will replace the current reference to the RouteMap component with the
following two lines:

<InputRouteMap @bind-Value="_trail.Waypoints" />
<ValidationMessage For="@(() => _trail.Waypoints)" />

Then in the OnParametersSet method, we’ll remove the two lines that reference the
old Route property:

_trail.Route.Clear();
_trail.Route.AddRange(Trail.Route.Select(ri => new TrailDto.RouteInstruction
{
 Stage = ri.Stage,
 Description = ri.Description
}));

Replace them with these two lines, which use the new Waypoints property:

_trail.Waypoints.Clear();
_trail.Waypoints.AddRange(Trail.Waypoints.Select(wp => new

TrailDto.WaypointDto(wp.Latitude, wp.Longitude)));

The final updates we’ll do are in the API. We need to update the AddTrailEndpoint
and EditTrailEndpoint to use the new waypoints. We also need to update the data-
base to store waypoints.

Let’s start with the database changes. Under Persistence > Entities, add a new class
called Waypoint with the following code.

212 CHAPTER 8 Integrating with JavaScript libraries

public class Waypoint
{
 public int Id { get; set; }
 public int TrailId { get; set; }
 public decimal Latitude { get; set; }
 public decimal Longitude { get; set; }

 public Trail Trail { get; set; } = default!;
}

public class WaypointConfig :
➥IEntityTypeConfiguration<Waypoint>
{
 public void Configure(EntityTypeBuilder<Waypoint> builder)
 {
 builder.Property(x => x.TrailId).IsRequired();
 builder.Property(x => x.Latitude).IsRequired();
 builder.Property(x => x.Longitude).IsRequired();
 }
}

The Waypoint class defines what data will be saved regarding a waypoint. As way-
points will always belong to a trail, each waypoint will be saved with a reference to the
trail they belong to. The WaypointConfig class specifies some simple rules stating
that the three properties—TrailId, Latitude, and Longitude—must not be null
at the database level.

 We can now delete the old RouteInstruction class, which is in the same folder.
Then in the Trail class, we can remove the Route property and replace it with the
following:

public ICollection<Waypoint> Waypoints { get; set; } = default!;

The last update regarding the database is in the BlazingTrailsContext class under
Persistence. The following listing shows the updated code.

public class BlazingTrailsContext : DbContext
{
 public DbSet<Trail> Trails => Set<Trail>();
 public DbSet<Waypoint> Waypoints { get; set; }
 ➥=> Set<Waypoint>():

 public BlazingTrailsContext(
 ➥DbContextOptions<BlazingTrailsContext> options)
 ➥: base(options) { }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 modelBuilder.ApplyConfiguration(new TrailConfig());

Listing 8.11 Waypoint.cs

Listing 8.12 BlazingTrailsContext.cs: Changing to Waypoints

Defines the Waypoint
database entity

Shows the database configuration
settings for the Waypoint entity

Replaces the
RouteInstructions DbSet

2138.3 Integrating the RouteMap component with the TrailForm
 modelBuilder.ApplyConfiguration(
 ➥new WaypointConfig());
 }
}

The first change removes the old RouteInstructions property and replaces it with
a new Waypoints one. The second change removes the RouteInstruction config-
uration and replaces it with the Waypoint configuration. When we create a new
Entity Framework (EF) migration in a second, these two changes will translate into
instruction to EF to drop the RouteInstructions table and create a new Way-
points one.

 Those are all the database changes we need to do. All that’s left is to generate a
new migration and apply that to the database. I’m using the Package Manager Con-
sole in Visual Studio to do this. With the BlazingTrails.Api project selected, run the
following commands:

Add-Migration AddWaypoints
Update-Database

The first command will create a new migration, which will drop the old Route-
Instructions table and create a new one for Waypoints. The second command
will run that migration against the database and apply the changes.

 Now that the database is taken care of, we can update our endpoints. We’ll start
with the AddTrailEndpoint. The following listing shows the updated HandleAsync
method.

public override async Task<ActionResult<int>> HandleAsync(

➥AddTrailRequest request, CancellationToken cancellationToken = default)
{
 var trail = new Trail
 {
 Name = request.Trail.Name,
 Description = request.Trail.Description,
 Location = request.Trail.Location,
 TimeInMinutes = request.Trail.TimeInMinutes,
 Length = request.Trail.Length,
 Waypoints = request.Trail.Waypoints.Select(
 ➥wp => new Waypoint
 {
 Latitude = wp.Latitude,
 Longitude = wp.Longitude
 }).ToList()
 };

 await _database.Trails.AddAsync(trail, cancellationToken);
 await _database.SaveChangesAsync(cancellationToken);

 return Ok(trail.Id);
}

Listing 8.13 AddTrailEndpoint.cs: Update to HandleAsync method

Replaces the
RouteInstructionConfig

The waypoints are added
to the trail as part of the
object initializer.

214 CHAPTER 8 Integrating with JavaScript libraries
The HandleAsync method has had all traces of the RouteInstruction type
removed, and we’re now adding waypoints as part of the object initializer for the Trail.
Let’s move on to the EditTrailEndpoint. The following listing shows the updates.

public override async Task<ActionResult<bool>> HandleAsync(

➥EditTrailRequest request, CancellationToken cancellationToken = default)
{
 // other code omitted for brevity
 trail.Name = request.Trail.Name;
 trail.Description = request.Trail.Description;
 trail.Location = request.Trail.Location;
 trail.TimeInMinutes = request.Trail.TimeInMinutes;
 trail.Length = request.Trail.Length;
 trail.Waypoints = request.Trail.Waypoints.Select(
 ➥wp => new Waypoint
 {
 Latitude = wp.Latitude,
 Longitude = wp.Longitude
 }).ToList();
 // other code omitted for brevity
}

We’ve removed the reference to the old Route property and replaced it with the new
Waypoints property. The GetTrailEndpoint needs a small update. This is called
when we load a trail to be edited and we need to update it to send back the waypoints.
We need to replace the line

trail.Route.Select(ri => new GetTrailRequest.RouteInstruction(ri.Id,
ri.Stage, ri.Description))));

with this line:

trail.Waypoints.Select(wp => new GetTrailRequest.Waypoint(wp.Latitude,
wp.Longitude))));

Now we have completed all our updates, and we can run the application to test our
work. If all has gone to plan, you will be able to add waypoints to a trail, save the trail,
and re-edit it so that the existing waypoints will be displayed.

8.4 Displaying the RouteMap on the TrailDetails drawer
The final update we’re going to make to the application is to display the map in a
read-only mode on the trail details drawer. Figure 8.6 shows what this will look like
when we’re done.

 Before we make any changes to the TrailDetails component, we’re going to
update the Trail.cs class (BlazingTrails.Client > Features > Home > Shared). Cur-
rently, it doesn’t have a property to hold the waypoints of a trail, so we’re going to add
it now. Place the following code after the last property in the class:

public List<LatLong> Waypoints { get; set; } = new List<LatLong>();

Listing 8.14 EditTrailEndpoint.cs: Update to HandleAsync method

Existing waypoints are
updated whenever
the trail is changed.

2158.4 Displaying the RouteMap on the TrailDetails drawer
Figure 8.6 The RouteMap component is displayed in the trail details drawer.

Now we’ll move on to the RouteMap component. The following listing shows the
updates.

<div class="map-wrapper">
 @if (!IsReadOnly)
 {
 <div class="controls">
 <button @onclick="DeleteLastWaypoint" class="btn btn-secondary"
 title="Delete last waypoint" type="button">
 <i class="bi bi-trash"></i> Remove Last Waypoint
 </button>
 </div>
 }
 <div style="height: @(Height); width:@(Width);" @ref="_map"></div>
</div>

@code {
 // other code omitted for brevity
 [Parameter] public bool IsReadOnly { get; set; }

 protected override async Task OnAfterRenderAsync(bool firstRender)

Listing 8.15 RouteMap.razor: Change to enable read-only mode

In read-only
mode, the
route is
displayed but
can't be edited.

We will only display the Delete Last Waypoint
button if the value of IsReadOnly is false.

 The new IsReadOnly parameter
allows the consumer to decide how

they want the map to display.

216 CHAPTER 8 Integrating with JavaScript libraries
 {
 if (firstRender)
 {
 // other code omitted for brevity
 await _routeMapModule.InvokeVoidAsync(
 ➥"initialize", _map, _routeMapReference, Waypoints,
 ➥IsReadOnly);
 }
 }
 // other code omitted for brevity
}

We’ve added a new component parameter, IsReadOnly, to allow the consumer of the
component to specify how the map should be displayed. We then use this in the
markup to hide the Delete Last Waypoint button based on its value. We also pass it
into the initialize JavaScript function, which we’ll look at next.

 With the updates to the RouteMap component complete, let’s make the necessary
updates to the JavaScript code. The following listing shows the changes.

export function initialize(hostElement,

➥routeMapComponent, existingWaypoints, isReadOnly) {
 // other code omitted for brevity
 if (!isReadOnly) {
 hostElement.map.on('click', function (e) {
 let waypoint = L.marker(e.latlng);
 waypoint.addTo(hostElement.map);
 hostElement.waypoints.push(waypoint);
 let line = L.polyline(hostElement.waypoints
 ➥.map(m => m.getLatLng()), { color: 'var(--brand)' })
 ➥.addTo(hostElement.map);
 hostElement.lines.push(line);

 routeMapComponent.invokeMethodAsync('WaypointAdded',
 ➥e.latlng.lat, e.latlng.lng);
 });
 }
}

We first update the function’s signature to accept the isReadOnly parameter. We
then use this new parameter to wrap the click handler with a check. The click handler
will only be set up if the value of isReadOnly is false. This will stop any waypoints
appearing on the map if a user clicks on it when it’s in read-only mode.

 With read-only mode available on the RouteMap, we can add it to the Trail-
Details component (Features > Home > Shared). Listing 8.17 shows the changes.

Listing 8.16 RouteMap.razor.js: Updates to allow read-only mode

The value of IsReadOnly is passed
to the initialize JavaScript function.

The signature is
updated to accept the
isReadOnly parameter.

The click handler for the map is
wrapped in a check of isReadOnly,
and the handler will only be set
up if isReadOnly is false.

t
2178.4 Displaying the RouteMap on the TrailDetails drawer

@using BlazingTrails.ComponentLibrary.Map

<div class="drawer-wrapper @(_isOpen ? "slide" : "")">
 <div class="drawer-mask"></div>
 <div class="drawer">
 <div class="drawer-content">
 // other code omitted for brevity
 <div>
 @if (_activeTrail.Waypoints.Any())
 {
 <RouteMap
 ➥Waypoints="_activeTrail.Waypoints"
 ➥Width="100%" IsReadOnly="true" />
 }
 </div>
 </div>
 // other code omitted for brevity
 </div>
</div>

We start by adding a using statement; then we don’t have to fully qualify the Route-
Map component when we use it in the markup. Next we add a new div, which contains
an if statement. That statement checks if the trail is null and that there are waypoints.
If these checks pass, the RouteMap component is displayed, passing in the waypoints
and setting it to read-only mode by setting IsReadOnly to true.

 Now we just need to load the waypoint data when we load the trails on the home
page, and we’ll be done.

 We’ll first update the GetTrailsRequest (Features > Home > Shared) in the
Shared project. Replace the current Trail record with the following two lines:

public record Trail(int Id, string? Name, string Image, string Location, int
TimeInMinutes, int Length, string Description, List<Waypoint>
Waypoints);

public record Waypoint(decimal Latitude, decimal Longitude);

We’ve added a new record to represent a waypoint. We’ve also added a list of way-
points to the Trail record. Now we can update the endpoint in the API to return
those waypoints.

 Using the GetTrailsEndpoint in BlazingTrails.Api > Features > Home > Shared
makes the changes shown in the following listing.

[HttpGet(GetTrailsRequest.RouteTemplate)]
public override async Task<ActionResult<GetTrailsRequest.Response>>

➥HandleAsync(int trailId, CancellationToken cancellationToken = default)
{

Listing 8.17 TrailDetails.razor: Add RouteMap in read-only mode

Listing 8.18 GetTrailsEndpoint.cs: Updates to return waypoints

We add a new using statemen
to save having to fully qualify
the RouteMap component.

If the trail has waypoints, we
display the RouteMap
component passing it the list
of waypoints. We also specify
that the component renders
in read-only mode by setting
IsReadOnly to true.

218 CHAPTER 8 Integrating with JavaScript libraries
 var trails = await _context.Trails
 ➥.Include(x => x.Waypoints)
 ➥.ToListAsync(cancellationToken);

 var response = new GetTrailsRequest.Response(trails.Select(trail => new
 ➥GetTrailsRequest.Trail(
 trail.Id,
 trail.Name,
 trail.Image,
 trail.Location,
 trail.TimeInMinutes,
 trail.Length,
 trail.Description,
 trail.Waypoints.Select(wp =>
 ➥new GetTrailsRequest.Waypoint(wp.Latitude,
 ➥wp.Longitude)).ToList()
)));

 return Ok(response);
}

The first change is to include the waypoint data when retrieving the trails from the
database. Once we have that data, we can make the second change when constructing
the GetTrailsRequest.Response. We use that data to populate the new Way-
points property we just added.

 Finally, back in the BlazingTrails.Client project, we can update the HomePage
.razor component (BlazingTrails.Client > Features > Home). In the code block,
we’re going to populate the Waypoints property we added to the Trail class at the
start of this section with the waypoints returned by the GetTrailsEndpoint.

protected override async Task OnInitializedAsync()
{
 // other code omitted
 Id = x.Id,
 Name = x.Name,
 Image = x.Image,
 Description = x.Description,
 Location = x.Location,
 Length = x.Length,
 TimeInMinutes = x.TimeInMinutes,
 Waypoints = x.Waypoints.Select(wp => new

 ➥BlazingTrails.ComponentLibrary.Map.LatLong(
 ➥wp.Latitude, wp.Longitude)).ToList().

 // other code omitted
}

We’re done! At this point, we can build the solution and run everything to check out
our work (figure 8.7).

Listing 8.19 HomePage.razor: Populating waypoints

When loading the trails from the
database, include the Waypoints data.

Populate the new Waypoints
property with the waypoint
data from the database.

This populates the trail’s
waypoints, which will be used
by the TrailDetails component.

219Summary

Figure 8.7 The Trail Details pane displaying the RouteMap component with various waypoints outlining
the route for the trail

Open any trail from the home page you’ve added waypoints for, and you should see
the map being displayed with the relevant waypoints.

Summary
 The Blazor application can make calls into JavaScript via the IJSRuntime

abstraction.
 IJSRuntime can be used to make calls to any JavaScript function in the global

scope using the InvokeAsync and InvokeVoidAsync methods.
 When writing custom JavaScript, instead of adding it to the global scope, a bet-

ter practice is to use JavaScript modules.
 IJSRuntime can be used to load JavaScript modules into C#, where a reference

is captured to that module using the IJSObjectReference type.
 Functions exported by a module can be executed using the InvokeAsync and

InvokeVoidAsync methods provided by the IJSObjectReference interface.
 When using IJSObjectReference, it should be disposed of correctly by

implementing the IAsyncDisposable interface.

The RouteMap
is displayed in
a read-only
mode in the
trail details
drawer.

220 CHAPTER 8 Integrating with JavaScript libraries
 The DotNetObjectReference<T> class is used to create references to
instances of .NET objects, which can be passed to JavaScript functions.

 Inside JavaScript functions, the DotNetObjectReference can be used to call
any method on that instance.

 For C# methods to be invokable from JavaScript, they must be decorated with
the [JSInvokable] attribute.

Securing Blazor
applications
Having the ability to customize and tailor the user’s experience in an application is
almost a must-have nowadays. Although it’s possible to add a certain measure of
customization by storing values in cookies or local storage, often the common
approach is to have users create an account and sign in to the application—this is
also far more secure.

 Once a user is signed in, it opens all kinds of opportunities. In e-commerce
sites, such as Amazon, users can view their previous orders, track current ones, and
view tailored recommendations of products they might like. On news sites, users
can create customized news feeds containing just the information they’re inter-
ested in seeing.

 When allowing users to sign in to an application, there are two processes that
must happen:

This chapter covers
 Integrating with an external identity provider

 Displaying UI based on a user’s authentication status

 Restricting pages to authorized users

 Authorizing users by role
221

222 CHAPTER 9 Securing Blazor applications
 Authentication—The process of determining if someone is who they claim to be
 Authorization—The process of checking if someone has the rights to access a

resource

For example, a user can be authenticated (logged in) but not authorized to view a
page in an application. This could be because the page is restricted to administrators
and the user is not in that role.

 In this chapter, we will secure Blazing Trails to allow only users who are logged in
to the application to create trails. We will also restrict users to be allowed to edit only
their own trails. Finally, we will build on this functionality by adding in roles. Roles are
a way of grouping users. We will create an administrator role and allow any user in that
role to edit any trail in the system.

 To enable this functionality, we’ll need an identity provider (IdP). An IdP is
responsible for storing and managing a user’s digital identity. They also offer a way to
control access to resources such as APIs, applications, or services. Some large IdPs you
would have heard of are Microsoft, Google, Facebook, and Twitter. If you’ve ever used
your credentials from one of these to sign in to a third-party service, you’ve used an
IdP. Figure 9.1 shows an overview of the process.

Blazor can interoperate with any provider compliant with OpenID Connect (OIDC)
(https://openid.net/connect/), and there are many options (identity providers)
available for doing this. Here are a few of the more popular providers:

 Duende’s IdentityServer
 Azure Active Directory
 Auth0
 Azure Active Directory B2C
 Okta

My personal favorite is Auth0 (https://auth0.com). It’s a feature-rich IdP with an easy-
to-understand, clear interface. It supports a vast array of login methods, from username

Identity provider
(IdP)Application

Browser

When the user logs in,
the application redirects
them to the IdP.

The application requests
user details from the IdP.

The user logs in with their
credentials and is then
redirected back to the
application.

Figure 9.1 Shows a summary
of the interaction between an
application, a user, and an
identity provider

https://openid.net/connect/
https://auth0.com

2239.1 Integrating with an identity provider: Auth0
and password to passwordless logins—and the best bit is they offer a free account that
supports up to 7,000 active users. This is the identity provider we’ll be using to enable
authentication and authorization in Blazing Trails.

9.1 Integrating with an identity provider: Auth0
Gone are the days of rolling your own authentication system. Creating a Users table
in your database and storing usernames and passwords is no longer acceptable. Hav-
ing your application be the latest breach on haveibeenpwned.com is not something
you want to happen. Authentication and authorization are complex issues, and using
an IdP abstracts a large chunk of the complexity—and responsibility—away from us.

When using an IdP, we delegate the sign-up and login process to it. Users are for-
warded from our application to the IdP, where they log in. They are then sent back to
our application once that process is complete. The specifics of what happens depends
on what flow (https://auth0.com/docs/authorization/flows) is used.

 When using Blazor WebAssembly with Auth0, we use the Authorization Code Flow
with Proof of Key for Code Exchange (PKCE). In this flow, the user is sent to Auth0 to
log in. When they successfully complete the login, they are returned to the applica-
tion with an authorization code. Blazor then makes a call to Auth0 with the code and
requests an access token and an ID token, which are kept in the browser’s session stor-
age. Figure 9.2 visualizes this process.

Figure 9.2 This diagram shows the process of logging in to a Blazor WebAssembly
application via Auth0 using the Authorization Code Flow with PKCE.

The ID token is used by Blazor to construct a ClaimsIdentity for the user. This is
an object that represents the user’s digital identity for that application. We can then
access this information in various ways, which we’ll explore later in this chapter. The
access token is used when making calls to an API and contains details regarding what
the user is allowed to access.

 If you’re using Blazor Server, the process is a little different. When the user is redi-
rected back from the IdP to the Blazor Server app, an additional request is made to

Blazor app
(running in the browser)

Auth0

User is redirected to Auth0 to log in.

After successful login, the user is
returned with an authorization code.

Blazor requests identity and access
tokens from Auth0 using the
authorization code.

https://haveibeenpwned.com/
https://auth0.com/docs/authorization/flows

224 CHAPTER 9 Securing Blazor applications
Auth0 for the user details, which are then saved into a cookie. There are no access
tokens or ID tokens in this scenario.
 Now that we have a bit of an idea what is happening, let’s get on with the integration. If

you haven’t already, head over to http://auth0.com/signup to create a free account.

9.1.1 Registering applications with Auth0

The first thing we need to do is register both our Blazor WebAssembly application
and our API with Auth0. From the menu in the Auth0 dashboard (https://manage
.auth0.com), select Applications > Applications. Then select Create Application.

 We’ll register the Blazor app first. In the modal, enter the name as Blazing Trails
Client. Then select Single Page Web Applications as the application type. Then click
Create. After Auth0 creates the application, move to the Settings tab and make a note
of the Domain and Client ID—we’ll need these a little later. Then scroll down to the
Application URIs section and enter the following in the Allowed Callback URLs box:

https:/./localhost:{port}/authentication/login-callback

Make sure to replace {port} with the port your BlazingTrails.Api project runs from.
Just to be clear, that’s the port the API project runs from, not the Client project. Once
you’ve done that, scroll to the bottom of the page and click Save Changes.

 Now let’s register the API. From the main menu on the left, select Applications > APIs.
Then click Create API. In the modal, enter the name as Blazing Trails API; then
for the Identifier, enter https:/./blazingtrailsapi.com. The Identifier is a
unique string that identifies a particular API. If we had multiple APIs, we would need
to request access tokens for each one using its identifier. Although the Identifier

can be any unique string value, Auth0 recommends using a URL. If Blazing Trails
were a public site and the API was accessible from https:/./blazingtrails.com/ api, we
would use that URL. But since it’s not, we will use this fake URL instead. Nothing will
ever call this URL, so the fact that it’s fake doesn’t cause any issues.

 Leave the Signing Algorithm as it is, and click Create. At this point, both of our
applications have been successfully registered with Auth0.

9.1.2 Customizing tokens from Auth0

As part of the login process, ASP.NET Core constructs a type called ClaimsPrincipal,
which contains an Identity property that is of type ClaimsIdentity. This represents
a user identity for an application. We’ll be accessing this in both our Blazor app and
our WebAPI over the course of this chapter, when we need to check something about
the user’s identity. One of the properties we’ll be accessing is called Name, which we’ll
do like this: User.Identity.Name.

 This is going to be automatically populated with the user’s email address in our
Blazor app, as Blazor uses the ID token to construct the Identity, and it contains a
claim with the user’s email address. However, the access token doesn’t contain this
claim by default. This means that when we call the API, it won’t be able to populate
the User.Identity.Name property with the user’s email. In fact, we wouldn’t have

http://auth0.com/signup
https://manage.auth0.com
https://manage.auth0.com
https://manage.auth0.com

2259.1 Integrating with an identity provider: Auth0

s
access to the user’s email at all and we’re going to need the user’s email to know what
trails they own.

The good news is that Auth0 allows us to customize the claims that are returned for
each token. From the main menu in Auth0, select Auth Pipeline > Rules. Then click
the Create button. On the next screen, select the Empty Rule option. This will give us
a blank rule that we can use to define the additional claims we want. Name the rule
Customize Tokens, then add the code in listing 9.1. This code is run by Auth0 when-
ever a user logs in and will add the name claim to the access token with the value of
that claim being the user’s email address. Now when we send the access token to the
API from Blazor, the API will be able to populate the User.Identity.Name property
with the user’s email address.

function (user, context, callback) {
 const accessTokenClaims = context.accessToken || {};
 accessTokenClaims['http://schemas.xmlsoap.org/ws/
 ➥2005/05/identity/claims/name'] = user.email;

 callback(null, user, context);
}

That’s all the customization we need to do in Auth0 for now. Let’s head over to our
Blazing Trails solution and finish the setup there.

9.1.3 Configuring Blazor WebAssembly to use Auth0

The first step is to add a new file called appsettings.json to the wwwroot directory with
the following code:

{
 "Auth0": {
 "Authority": "{Domain}",
 "ClientId": "{Client ID}"
 }
}

What is a claim?
Claims are key-value pairs that represent information about the user issued by an
identity provider. There are a set of standard claims defined (http://mng.bz/XZ0E),
but custom claims can also be added. Examples of standard claims are given_
name, family_name, and website. Claims are used by an application to decide if a
user can perform a certain task or access a certain feature. This is known as claims-
based authorization.

An example of this is an application that restricts access based on age. If the IdP
issues a claim that contains the logged-in user’s date of birth, then, if the application
trusts the issuer, it can accept or reject the user based on the value of that claim.

Listing 9.1 Customize tokens rule in Auth0

Defines a variable that hold
the access tokens claims

Adds the name claims
with the value being the
user’s email address

http://mng.bz/XZ0E

226 CHAPTER 9 Securing Blazor applications
Make sure to replace {Domain} and {Client ID} with the values you noted down
when registering the Blazor app with Auth0.

We then need to install two additional NuGet packages. The Blazor WebAssembly
authentication package (Microsoft.AspNetCore.Components.WebAssembly
.Authentication) and the http extensions package (Microsoft.Extensions
.Http).

 The authentication package provides a set of primitives that help authenticate
users and obtain tokens from IdPs to call secured APIs. We’ll need this so we can talk
to Auth0. The http extensions package will give us access to IHttpClientFactory,
which we’ll need to retrieve named http clients in our code.

 Add the following package references next to the existing ones in the Blazing-
Trails.Client.csproj file:

<PackageReference
Include="Microsoft.AspNetCore.Components.WebAssembly.Authentication"
Version="6.0.0" />

<PackageReference Include="Microsoft.Extensions.Http" Version="6.0.0" />

Once they’re installed, we can open the Program.cs file and add the code shown in
the following listing.

public static async Task Main(string[] args)
{
 // other code omitted for brevity

 builder.Services.AddOidcAuthentication(options =>
 {
 builder.Configuration.Bind("Auth0",

The appsettings.json file
There are various ways to specify application settings in ASP.NET Core (http://
mng.bz/M5o8) and the appsettings.json file is one of them. Different versions of
this file can be created to correspond to different deployment environments by
creating a file with the naming convention of appsettings.{environment}
.json—where {environment} should match the value of the ASPNETCORE_
ENVIRONMENT variable.

As an example, let’s say we wanted to use a different tenant in Auth0 for our produc-
tion environment. We would create an appsettings.production.json file with the same
Auth0 block, then change the Authority and ClientId values to match those of
the tenant we wanted to use in production.

Just remember, in Blazor WebAssembly, this file is shipped to the browser in plain
text and is easily viewable using the browser’s developer tools. Never store any sen-
sitive values or keys in this file.

Listing 9.2 Program.cs: Adding Auth0 integration

Adds support for
authentication using
OIDC-compliant
identity providers

http://mng.bz/M5o8
http://mng.bz/M5o8

2279.1 Integrating with an identity provider: Auth0

g
 ➥options.ProviderOptions);
 options.ProviderOptions.ResponseType = "code";
 });

 await builder.Build().RunAsync();
}

We start by adding the AddOidcAuthentication extension method. This sets up and
registers all the necessary services in Blazor for integrating with an OIDC-compliant
identity provider. We then state that the configuration for the identity provider should
be retrieved from the Auth0 section of the appsettings.json we just created. Finally, we
specified the authentication and authorization flow to use. For SPA applications, the
current recommended flow is Authorization Code Flow with Proof Key for Code
Exchange (PKCE).

NOTE More detailed information on Authorization Code Flow with PKCE
and other flows can be found on Auth0’s docs site (http://mng.bz/aJwX).

With the changes in Program.cs complete, we need to add a script tag to the
index.html page in the wwwroot folder. Above the current script tag referencing the
blazor.webassembly.js script, add the following tag:

<script src="_content/
Microsoft.AspNetCore.Components.WebAssembly.Authentication/
AuthenticationService.js"></script>

This script registers an authentication service that sits in JavaScript. It handles the
storage and retrieval of tokens from the browser’s session storage. It also manages the
sign-in and sign-out operations with the identity provider.

 To avoid having to fully qualify the names of auth-specific components, we will add
a couple of using statements to the main _Imports.razor at the root of the project.

@using Microsoft.AspNetCore.Authorization
@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

Next, we will update the router in App.razor. The following listing shows the
updated code.

<CascadingAuthenticationState>
 <Router AppAssembly="@typeof(Program).Assembly">
 <Found Context="routeData">
 <AuthorizeRouteView RouteData="@routeData"
 ➥DefaultLayout="@typeof(MainLayout)">

Listing 9.3 App.razor: Authentication updates

Specifies that the configuration for the OIDC provider should
come from the settings we put in the appsettings.json file

Specifies that the type of
authentication and authorization flow

should be Authorization Code flow

Provides a CascadingParameter
containing the current
authentication state of the user

The AuthorizeRouteView
component replaces the existin
RouteView component.

http://mng.bz/aJwX

228 CHAPTER 9 Securing Blazor applications

e

th
 <Authorizing>
 <p>Determining session state, please wait...</p>
 </Authorizing>
 <NotAuthorized>
 <h1>Sorry</h1>
 <p>You're not authorized to reach this page.
 ➥You need to log in.</p>
 </NotAuthorized>

 </AuthorizeRouteView>
 <FocusOnNavigate RouteData="@routeData" Selector="h1" />
 </Found>
 // other code omitted for brevity
 </Router>

</CascadingAuthenticationState>

The first change is to wrap the Router in the CascadingAuthenticationState
component. This component provides a CascadingParameter to all child compo-
nents—the whole application—which contains the user’s current authentication state.
Next, we’ve replaced the default RouteView component with the AuthorizeRoute-
View component. This new component can interact with Blazor’s authentication sys-
tem. It will allow us to decorate pages with an Authorize attribute that will limit access
to only authorized users. The AuthorizeRouteView comes with two templates,
Authorizing and NotAuthorized. The Authorizing template is shown while
Blazor is determining if the user is authorized or not. The NotAuthorized template is
shown when the user attempts to access a page component they don’t have access to.

 The final task we need to perform is to add a new page. This page is going to han-
dle the various authentication operations, such as logging in and logging out—it’s the
callback page we specified during the Auth0 setup. Create a new folder under Fea-
tures called Auth. Then add a new Blazor component called Authentication
.razor, as shown in the following listing.

@page "/authentication/{action}"
@using Microsoft.Extensions.Configuration

@inject NavigationManager Navigation
@inject IConfiguration Configuration

<RemoteAuthenticatorView Action="@Action">
 <LogOut>
 @{
 var authority =
 ➥(string)Configuration["Auth0:Authority"];
 var clientId =
 ➥(string)Configuration["Auth0:ClientId"];

 Navigation.NavigateTo(
 ➥$"{authority}/v2/logout?client_id={clientId}");
 }
 </LogOut>

Listing 9.4 Authentication.razor

The Authorizing
template is displayed

while the user’s
authentication status
is being determined.

The NotAuthorized template
is displayed when the user

isn’t authorized to access a
page in the application.

The page takes an action parameter
that is used to determine what
operation to perform.

The RemoteAuthenticatorView
is responsible for managing th
user’s authentication status
and interacts with Auth0.

By default, Blazor logs
e user out on the client

but the logout from
Auth0 must be handled
manually by calling the
Auth0 logout endpoint.

2299.1 Integrating with an identity provider: Auth0
</RemoteAuthenticatorView>

@code{
 [Parameter] public string? Action { get; set; }
}

The Authentication page takes an action parameter that determines what operation
it’s going to perform—examples are login and logout. The page contains the
RemoteAuthenticatorView component. This component’s job is to manage the
user’s authentication status by performing any interactions with Auth0. The login pro-
cess happens seamlessly, with no additional code required. But the logout process is
different. By default, Blazor logs the user out of only the client application; it doesn’t
terminate the login at the identity provider. This we must perform manually. To do so,
we add code to the LogOut template. This will be executed when a logout action is
requested, and it will redirect the user to Auth0 to complete the logout process.

 This is everything we need to integrate Blazor with Auth0. Now let’s set up the API.

9.1.4 Configuring ASP.NET Core WebAPI to use Auth0

Just as we did with the Blazor app, we’re going to start by adding the Auth0 settings to
the appsettings.json file. Add the following section to the file:

"Auth0": {
 "Authority": "{Domain}",
 "ApiIdentifier": "{Identifier}"
}

Replace {Domain} with the same domain you used in the Blazor registration (remem-
ber to include https://). Also replace {Identifier} with the Identifier you
used when registering the API.

 Next, we need to install a new NuGet package, which will allow us to work with
access tokens in the API. Add the following package reference to the Blazing-
Trails.Api.csproj file.

<PackageReference Include="Microsoft.AspNetCore.Authentication.JwtBearer"
Version="6.0.0" />

From here, we can open the Program.cs file and add the following code.

// other code omitted
builder.Services.AddAuthentication(options =>
{
 options.DefaultAuthenticateScheme =
 ➥JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme =
 ➥JwtBearerDefaults.AuthenticationScheme;
}).AddJwtBearer(options =>
{

Listing 9.5 Program.cs: Adding authentication services

This adds various services required
by authentication services and
allows configuration of options.

This tells the API to authenticate
using JSON Web Tokens (JWTs).

230 CHAPTER 9 Securing Blazor applications

T
t

te
d

 options.Authority = builder
 ➥.Configuration["Auth0:Authority"];
 options.Audience = builder
 ➥.Configuration["Auth0:ApiIdentifier"];
});

var app = builder.Build();

First, we call the AddAuthentication method. This registers and sets up various ser-
vices needed for authentication. We can then tell the API to use JSON Web Tokens
(JWTs) for authentication by calling the AddJwtBearer method. Next, we load the
Auth0 configuration from the appsettings.json so the API knows where to validate the
tokens that are sent to it.

 The final step is to add the authentication and authorization middleware. It’s
important where these are placed in the file, as order matters here. Add them
between the app.UseRouting() and app.MapControllers() calls:

app.UseAuthentication();
app.UseAuthorization();

At this point, the API is all set up and ready to go.

9.2 Displaying different UI fragments based on
authentication status
The first component we’re going to build will provide the links for anonymous users
to log in and authenticated users to log out. It will be displayed at the top of each page
just under the main header bar—this will give users access to it at all times. We’ll put
this new component in the Auth feature folder. The following listing shows the code
for the new component.

@inject NavigationManager Navigation
@inject SignOutSessionStateManager SignOutManager

<div class="container text-right">
 <AuthorizeView>
 <Authorized>
 <div>
 Hello, @context.User.Identity!.Name

 ➥Log out
 </div>
 </Authorized>
 <NotAuthorized>.

 ➥Log in/Sign up
 </NotAuthorized>
 </AuthorizeView>
</div>

Listing 9.6 LoginStatus.razor

Here we tell the API where it
can validate the tokens.

The AuthorizeView
component is used to display
UI fragments based on a
user’s authorization status.

he markup in
he Authorized
mplate will be
isplayed when

the user is
authorized.

Information about the
user can be accessed via
the context parameter.

The logout link allows logged-in
users to log out of the application.

The markup in the NotAuthorized template
is displayed to any unauthorized user.

The login link will redirect the user to the
Authentication page component, where they will
be forwarded to Auth0 to be authenticated.

2319.2 Displaying different UI fragments based on authentication status
@code{
 private async Task BeginSignOut(
 ➥MouseEventArgs args)
 {
 await SignOutManager.SetSignOutState();
 Navigation.NavigateTo("authentication/logout");
 }
}

The AuthorizeView component defines two templates, Authorized and Not-
Authorized. Inside the Authorized template, we place any markup we want autho-
rized users to see. Inside the NotAuthorized template, we place any markup we want
to show unauthorized users. The keyword here is authorized. Remember: a user can be
logged in (authenticated) but still not allowed to view content (authorized). In this case,
authorized just requires a user to be logged in, as we haven’t specified any roles or pol-
icies the user needs to meet. We’ll be covering this a little later when we implement
roles.

 If we have an authorized user, we display a greeting along with the user’s email
address. We access this email via a ClaimsPrincipal, which contains the user’s
ClaimsIdentity—User.Identity. We touched on this earlier: User.Identity is
populated with information from the claims in the ID token returned from Auth0. By
default, Auth0 returns the user’s email address as the value for the name claim. Blazor,
by default, maps the name claim to the Name property on the User.Identity object.
It’s worth noting that, depending on your identity provider and its configuration, dif-
ferent information could be returned in the name claim. It’s also possible to tell
Blazor which claim to use to populate the Name property. This is done in the Program
.Main method, inside the AddOidcAuthentication call:

options.UserOptions.NameClaim = ClaimTypes.GivenName;

We also render a logout link with an onclick handler defined. Clicking this link trig-
gers the BeginSignOut method defined in the code block. This method redirects the
user to the logout action of the Authentication page. But before doing that, it uses the
SignOutManager to safeguard the logout action from cross-site request forgery
(CSRF) attacks. It does this by setting some state, which is then checked by the logout
action. If this state isn’t present when the logout action is executed, then the logout
process won’t proceed.

 When we have an unauthenticated user, in this case an anonymous user, we display
a link to log in. This link redirects the user to the login action of the Authentication
page. Once there, they are redirected to Auth0 to either enter their email and pass-
word or sign up for a new account.

The BeginSignOut method uses the SignOutManager
class to help prevent cross-site request forgery

(CSRF) attacks on the logout endpoint. It sets some
state, which is checked in the logout function of

the Authentication page component before
allowing the user to complete the logout process.

232 CHAPTER 9 Securing Blazor applications
We can now add the LoginStatus component to the Header component in the
Layout feature folder. Then we run the application to check that everything is work-
ing. The following listing shows the updated Header component.

@using BlazingTrails.Client.Features.Auth

<nav class="navbar mb-3 shadow">

</nav>

<LoginStatus />

We’ve added a using statement to save having to fully qualify the path, then added a
reference to the LoginStatus component. We can now run the application and
check to see that everything is working (figure 9.3).

Figure 9.3 The sign-in/sign-up link is displayed to anonymous users at the
top. Then the customized greeting and logout link is displayed to signed-
in users at the bottom.

You should now see the Log in/Sign up link being displayed at the top right of the
screen just under the main header. You should be able to follow the link and create an
account and sign in.

Listing 9.7 Header.razor: Adding the AccessControl component

Adds using statement for the
AccessControl component

References the
AccessControl component

The Log in/Sign up link is displayed for anonymous users.

Once logged in, the user sees a personalized greeting and Log out link.

2339.2 Displaying different UI fragments based on authentication status
9.2.1 Updating the Home feature

Because users can now sign up to Blazing Trails and log in and out, we will make some
changes regarding what they will see. Up until now, any anonymous user could create
or edit a trail. This needs to change. We want only logged-in users to be able to create
trails, and we want only the owner of a trail to be able to edit it.

To make this happen, we first need to make a change to our API. We will add a new
Owner column to the Trail entity so we can store the email address of the user who
created it. We can then return the owner data when we get the trails to display on the
home page and check it against the currently logged-in user. If they match, we can dis-
play the button to edit the trail; otherwise, we won’t.

 Open Trail.cs in the BlazingTrails.Api > Persistence > Entities folder. Then add the
following property to the class:

public string Owner { get; set; } = default!;

While we’re here, we can also update the TrailConfig class in the same file. We need
to add the following line to make the new Owner property required at a database level:

builder.Property(x => x.Owner).IsRequired();

With those two lines in place, we can create a new migration that will update the trail
table in the database. From Visual Studio’s package manager console, run the follow-
ing two commands:

Add-Migration AddOwnerToTrail
Update-Database

The first command creates a new migration to add an Owner column to the Trails
database table. The second command will run that migration to apply the change to
the database.

 We now have a blank Owner column in our Trails database table. For now, we need
to manually add some email addresses to this column. For now, use the email address
of an account you’ve already created in Auth0. Later, we’ll update the Add Trail fea-
ture so this is added automatically when a user creates a trail.

 With the database changes complete, we can update the GetTrailsEndpoint
(BlazingTrails.Api > Features > Shared). The following listing shows the change.

// other code omitted for brevity
var response = new GetTrailsRequest.Response(trails.Select(trail =>

➥new GetTrailsRequest.Trail(
 trail.Id,
 trail.Name,
 trail.Image,
 trail.Location,
 trail.TimeInMinutes,
 trail.Length,

Listing 9.8 GetTrailsEndpoint.cs: Returning the trail owner

234 CHAPTER 9 Securing Blazor applications
 trail.Description,
 trail.Owner,
 trail.Waypoints.Select(wp => new GetTrailsRequest.Waypoint(

 ➥wp.Latitude, wp.Longitude)).ToList()
)));

// other code omitted for brevity

You will see an error after this change, as we also need to update GetTrailsRequest.cs.
This is in BlazingTrails.Shared > Features > Home > Shared. Update the Trail record
as follows to include an Owner property:

public record Trail(int Id, string Name, string? Image, string Location, int
TimeInMinutes, int Length, string Description, string Owner,
List<Waypoint> Waypoints);

This should remove the error in the endpoint, and the application will compile once
again. We can now focus our attention back to our Blazor code. In BlazingTrail.Client
> Features > Home > Shared, we will add an Owner property to Trail.cs.

public string Owner { get; set; } = "";

Now we can move up a folder and begin our work on the HomePage component. We’re
going to update the row template and make a small update to the OnInitialized-
Async method (listing 9.9).

...
<RowTemplate>

 <th scope="col">@trail.Name</th>
 <td>@trail.Location</td>
 <td>@(trail.Length)km</td>
 <td>@trail.TimeFormatted</td>
 <td class="text-right">
 <AuthorizeView>
 @if (trail.Owner.Equals(

 ➥context.User.Identity?.Name,
 ➥StringComparison.OrdinalIgnoreCase)
 {
 <button @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{trail.Id}"))"
 ➥title="Edit" class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 }
 </AuthorizeView>
 <button @onclick="@(() => HandleTrailSelected(trail))"
 ➥title="View" class="btn btn-primary">
 <i class="bi bi-binoculars"></i>
 </button>
</td>

</RowTemplate>
// other code omitted

Listing 9.9 HomePage.razor: Adding AuthorizeView to RowTemplate

The new owner data is
added to the response.

The existing Edit button is wrapped
in an AuthorizeView component.

If the trail’s owner and
the logged-in user are

the same, we display
the Edit button.

2359.2 Displaying different UI fragments based on authentication status

a

ca
@code {
// other code omitted
protected override async Task OnInitializedAsync()
{
 // other code omitted for brevity
 _trails = response.Trails.Select(x => new Trail

 {
 Id = x.Id,
 Name = x.Name,
 Image = x.Image,
 Description = x.Description,
 Location = x.Location,
 Length = x.Length,
 TimeInMinutes = x.TimeInMinutes,
 Owner = x.Owner,
 Waypoints = x.Waypoints.Select(wp =>

 ➥new BlazingTrails.ComponentLibrary.Map.LatLong(wp.Latitude,
 ➥wp.Longitude))

 ➥?.ToList() ?? new List<ComponentLibrary.Map.LatLong>();
 });

 // other code omitted
}
// other code omitted
}

The existing Edit button is wrapped in an AuthorizeView component. This immedi-
ately makes the button visible to only logged-in users—but we need a little more.
Inside the AuthorizeView, we use the context variable to compare the current-user
email with the email stored in the owner property of the trail. If they match, we dis-
play the Edit button. If not, nothing will be displayed. Finally, in the code block, we’re
mapping the Owner information that is returned from the API response to the Owner
we just added to the local Trail class.

 While we’re on the HomePage component, we will make one other change. The call
to action at the top of the page needs updating. It contains a link to the Add Trail
form, which we want to display only to logged-in users. We’ll use the AuthorizeView
component to display different messages depending on whether the user is logged in
or not. The following listing shows the update.

// other code omitted for bevity
<AuthorizeView>

 <Authorized>
 <div class="mb-4">
 <p class="font-italic text-center">Do you have an awesome trail

 ➥you'd like to share? Add it here.</p>
 </div>
</Authorized>
<NotAuthorized>
 <div class="mb-4">
 <p class="font-italic text-center">Do you have an awesome trail

Listing 9.10 HomePage.razor: Call to action update

The Owner from the API
response is mapped to the
Owner on the local Trail class.

An AuthorizeView component is added, defining
both Authorized and NotAuthorized templates.When a user is

uthorized, they
see the original
ll to action link.

When a user is not authorized, they see a modified
call to action prompting them to log in or sign up.

236 CHAPTER 9 Securing Blazor applications
 ➥you'd like to share? Please
 ➥log in or sign up.</p>

 </div>
 </NotAuthorized>
</AuthorizeView>

// other code omitted for brevity

When logged-in users view the page, they will still see the original call to action, with
the link to the add trail form. However, when anonymous users view the page, they
will see a modified version of the call to action. It will prompt them to either log in to
the application or sign up for an account.

The changes for the HomePage are complete. We now need to make a small
update to the SearchPage component before moving on to the TrailCard compo-
nent. In the SearchPage component, we need to add the same mapping between the
owner properties we did on the HomePage. In the OnInitializedAsync method,
add the following line to the addTrails variable declaration:

Owner = x.Owner

Now let’s update the TrailCard component. In the TrailCard, we’re going to add
the same code as we did for the RowTemplate on the home page (see listing 9.11).
Just as we did before, we’re wrapping the existing button in an AuthorizeView com-
ponent. We then use the context variable to check the current user’s email against the
owner of the trail. If they match, the Edit button is displayed.

// other code omitted for brevity
<AuthorizeView>

 @if (Trail.Owner.Equals(
 ➥context.User.Identity?.Name,

➥StringComparison.OrdinalIgnoreCase))
{
 <button class="btn btn-outline-secondary mt-3 float-right"
 ➥title="Edit" @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{Trail.Id}"))">
 <i class="bi bi-pencil"></i>
 </button>
}

</AuthorizeView>
// other code omitted for brevity

We can now run the application and test our work. Starting off without logging in, we
should see a view of the home page like that shown in figure 9.4. As you can see, no
Edit buttons are visible on the trail cards.

 Now, log in with the same user you set the owner property to for any existing trails.
You should now see an Edit button available on the trail card (figure 9.5).

Listing 9.11 TrailCard.razor: Hiding Edit Trail button from unauthorized users

The existing Edit button is wrapped
in an AuthorizeView component.

If the trail’s
owner and the
logged-in user
are the same,

we display the
Edit button.

2379.2 Displaying different UI fragments based on authentication status

Figure 9.4 The Edit button
is no longer displayed on
the trail card when a user is
logged out.

When logged out, no Edit buttons are visible on the trail cards.

Figure 9.5 The Edit
button is displayed
once a user logs in to
the application.

When logged in, the Edit button is visible on the trail card.

238 CHAPTER 9 Securing Blazor applications
That’s some great work. But hiding buttons isn’t enough. We also need to protect
pages from direct access; a user could easily just type in the address of the Add Trail
page. That’s what we’ll look at next.

9.3 Prevent unauthorized users accessing a page
Restricting access to pages is a common requirement when building applications. Blazor
uses a similar approach to that of WebAPIs—the Authorize attribute. We can use the
@attributes directive to apply the [Authorize] attribute to a page component.
This works in tandem with the AuthorizeRouteView component in the router to
restrict page-level access. We added the AuthorizeRouteView earlier in the chapter,
but let’s try and understand its purpose in a little more detail.

 By default, the Router contains a component called RouteView. This
component’s job is to render the requested page based on the URL. The limitation of
this component is that it has no awareness of security. This is where the Authorize-
RouteView component comes in. It’s a drop-in replacement for the RouteView, and
it understands Blazor’s security features. Before navigating to a page, it will check that
the user is authorized to view that page by checking for the Authorize attribute. It
will then either load the page or render any markup specified in the NotAuthorized
template it exposes.

 In Blazing Trails, we need to protect our Add and Edit Trail pages from unauthorized
users. So far, we’ve made changes to render the links to only those pages when a user
is logged in. However, that won’t protect us from a user who knows the direct URL.
To protect against this, we need to add the following line of code to each page:

@attribute [Authorize]

My preferred place to add this is directly below the @page attribute. So, for the
EditTrailPage (BlazingTrails.Client > Features > ManageTrails > EditTrail), it should
look like this:

@page "/edit-trail/{TrailId:int}"
@attribute [Authorize]

And for the AddTrailPage (BlazingTrails.Client > Features > ManageTrails >
AddTrail), it should look like this:

@page "/add-trail"
@attribute [Authorize]

That’s it! If we run the application now and try to access either page without logging
in, we will see the message shown in figure 9.6—which is defined in the Authorize-
RouteView component’s NotAuthorized template.

 If we then log in to the application, we can navigate to either page as expected. On
the surface, it looks like we’ve done our job. Unauthorized users can no longer load
the Edit Trail or Add Trail pages. But what about the server? We added the Authorize
attribute to prevent users typing in a URL and going directly to a restricted

2399.3 Prevent unauthorized users accessing a page
page, but what if a malicious user knows the address of the add trail endpoint and
tries to post directly to that? Currently, we have no protection for this type of attack.

 It’s important to understand that SPA applications like Blazor WebAssembly can
never be made truly secure. They run on a client machine, which means they are open
to all sorts of tampering and can even be decompiled. Therefore, the API is the only place
we are truly secure. Whatever we do on the client is essentially just cosmetic and is there
to provide a good user experience. Securing the server is the most important thing.

9.3.1 Securing API endpoints

A major part of securing our API involves doing one thing, adding the [Authorize]
attribute to all the endpoints that only authorized users should access. These end-
points all reside in the Features > ManageTrails folder.

 AddTrailEndpoint

 EditTrailEndpoint

 GetTrailEndpoint

 UploadTrailImageEndpoint

Using the AddTrailEndpoint as an example, the following shows what each end-
point should look like once the attribute is added:

[Authorize]
[HttpPost(AddTrailRequest.RouteTemplate)]
public override async Task<ActionResult<int>> HandleAsync(AddTrailRequest

request, CancellationToken cancellationToken = default)

We also need to add an additional check into the GetTrailEndpoint, EditTrail-
Endpoint, and UploadTrailImageEndpoint to ensure that the user accessing
those endpoints is also the owner of the trail, as we don’t want any logged-in users to
be able to edit any trail. Starting with the GetTrailEndpoint (Features > Manage-
Trails > EditTrail), we’ll add a check for the owner (see listing 9.12).

The content of the AuthorizeRouteView’s NotAuthorized template
is displayed when attempting to navigate to a restricted page.

Figure 9.6 When trying to access a restricted page as a logged-out user, the
AuthorizeRouteView component’s NotAuthorized template is displayed.

240 CHAPTER 9 Securing Blazor applications

public override async Task<ActionResult<GetTrailRequest.Response>>

➥HandleAsync(int trailId, CancellationToken cancellationToken = default)
{
 var trail = await _context.Trails.Include(x => x.Waypoints)
 ➥.SingleOrDefaultAsync(x => x.Id == trailId,
 ➥cancellationToken: cancellationToken);

 if (trail is null)
 return BadRequest("Trail could not be found.");

 if (!trail.Owner.Equals(
 ➥HttpContext.User.Identity!.Name,
 ➥StringComparison.OrdinalIgnoreCase))
 return Unauthorized();

 // other code omitted for brevity
}

We check the trail’s owner against the currently logged-in user, and if they don’t
match, we return an Unauthorized response to the client. We can now do the same
check in the EditTrailEndpoint (see the following listing).

public override async Task<ActionResult<bool>> HandleAsync(

➥EditTrailRequest request, CancellationToken cancellationToken = default)
{
 var trail = await _database.Trails.Include(x => x.Waypoints)
 ➥.SingleOrDefaultAsync(x => x.Id == request.Trail.Id,
 ➥cancellationToken: cancellationToken);

 if (trail is null)
 return BadRequest("Trail could not be found.");

 if (!trail.Owner.Equals(
 ➥HttpContext.User.Identity!.Name,
 ➥StringComparison.OrdinalIgnoreCase))
 return Unauthorized();
 // other code omitted for brevity
}

Last but not least, we can add the check to the UploadTrailImageEndpoint (see
the following listing).

public override async Task<ActionResult<string>> HandleAsync(

➥[FromRoute] int trailId, CancellationToken cancellationToken = default)
{
 var trail = await _database.Trails.SingleOrDefaultAsync(
 ➥x => x.Id == trailId, cancellationToken);

Listing 9.12 GetTrailEndpoint.cs: Adding check for owner

Listing 9.13 EditTrailEndpoint.cs: Adding check for owner

Listing 9.14 UploadTrailImageEndpoint.cs: Adding check for owner

A check is performed to see if
the owner of the trail is the
same as the logged-in user.

If the current user isn’t the owner, an
Unauthorized response is returned.

A check is performed to see if
the owner of the trail is the
same as the logged-in user.

If the current user isn’t the owner, an
Unauthorized response is returned.

2419.3 Prevent unauthorized users accessing a page
 if (trail is null)
 return BadRequest("Trail does not exist.");

 if (!trail.Owner.Equals(
 ➥HttpContext.User.Identity!.Name,
 ➥StringComparison.OrdinalIgnoreCase))
 return Unauthorized();
 // other code omitted for brevity
}

That is all we need to do to secure our endpoints from a direct attack. We have also
enforced our criteria that only trail owners should be able to edit a trail. If we run the
application, we can test our work. Log in with a trail owner account and attempt to
edit the trail. Unfortunately, we’ll see an error (figure 9.7).

Figure 9.7 When attempting to edit a trail, an error is shown.

If we check in the browser tools, we’ll see a more descriptive error:

Failed to load resource: the server responded with a status code of 401 ()

So, what’s happened? Now that we have secured the endpoints on the API, we need to
provide the API with something to prove we are who we say we are. Specifically, we
need to send an access token whenever we make a call to it from Blazor. Let’s look at
how we do this next.

9.3.2 Calling secure API endpoints from Blazor

When calling secured endpoints from SPA applications such as Blazor, it is common to
include an access token in the request. This access token is issued by an identity
provider—in our case Auth0—and it allows the API to verify what we’re allowed to
access. When we log in via Auth0, our access token is returned to the Blazor app,
where it is stored in the browser’s session storage.

A check is performed to see if
the owner of the trail is the
same as the logged-in user.

If the current user isn’t the owner, an
Unauthorized response is returned.

An error is displayed when attempting to edit a trail.

242 CHAPTER 9 Securing Blazor applications
 But how do we get the token from there and into our requests? Well, Blazor comes
with a custom message handler called BaseAddressAuthorizationMessage-
Handler that we can use with the HttpClient to include our access token automati-
cally on any request to the API.

NOTE The BaseAddressAuthorizationMessageHandler works only when
making requests to an API with the same base address as the Blazor applica-
tion. For example, a Blazor app running from https:/./blazingtrails
.com could use the handler if the API resides at https:/./blazing-
trails.com/api but not if it resides at https:/./blazingtrailsapi.com.
If you have this requirement, you can build your own custom message handler
(http://mng.bz/GEdJ).

We configure the handler in the Program.Main method. We’ll add a named Http-
Client instance and will configure it to use the BaseAddressAuthorization-
MessageHandler. The following listing shows the updated Program.Main method.

// other code omitted for brevity
builder.RootComponents.Add<App>("#app");
builder.RootComponents.Add<HeadContent>("head::after");

builder.Services.AddHttpClient("SecureAPIClient",
➥client => client.BaseAddress =
➥new Uri(builder.HostEnvironment.BaseAddress))
 .AddHttpMessageHandler
 ➥<BaseAddressAuthorizationMessageHandler>();

builder.Services.AddScoped(sp => new HttpClient {
➥BaseAddress = new Uri(builder.HostEnvironment.BaseAddress) });

// other code omitted for brevity

We’re using the AddHttpClient extension method to register a new named Http-
Client called SecureAPIClient. It’s configured to use the BaseAddress-
AuthorizationMessageHandler, so our access token will be included in any
request we make with it.

 It’s important to note that we’ve kept the original HttpClient. In applications
like Blazing Trails, which have both secure and nonsecure endpoints, you will need to
use the correct client, depending on the endpoint you’re calling. This is because the
BaseAddressAuthorizationMessageHandler will throw an AccessTokenNot-
AvailableException if it can’t find an access token to attach to the request. So, we
only want to use the HttpClient configured with that handler for requests we know
the user will be logged in for, which, for us, are just the requests in the ManageTrails
feature.

Listing 9.15 Program.cs: Adding secure HttpClient

Register a new named
HttpClient, called
SecureAPIClient, and
configure it to use the
BaseAddressAuthorization
MessageHandler.

http://mng.bz/GEdJ
https://blazingtrailsapi.com

2439.3 Prevent unauthorized users accessing a page
 Let’s update the request handlers in ManageTrails to use the new SecureAPI-
Client. Starting with the AddTrailHandler, update the code to that shown in the
following listing.

public class AddTrailHandler :

➥IRequestHandler<AddTrailRequest, AddTrailRequest.Response>
{
 private readonly IHttpClientFactory
 ➥_httpClientFactory;

 public AddTrailHandler(
 ➥IHttpClientFactory httpClientFactory)
 {
 _httpClientFactory = httpClientFactory;
 }

 public async Task<AddTrailRequest.Response> Handle(
 ➥AddTrailRequest request, CancellationToken cancellationToken)
 {
 var client = _httpClientFactory
 ➥.CreateClient("SecureAPIClient");
 var response = await client
 ➥.PostAsJsonAsync(AddTrailRequest.RouteTemplate,
 ➥request, cancellationToken);
 // other code omitted for brevity
 }
}

We start by updating the constructor to take an IHttpClientFactory instead of an
HttpClient. This is then stored in a private field for use in the Handle method.
Inside the Handle method, we use the IHttpClientFactory to create an instance
of the SecureAPIClient, which we then use to call the API. We can now repeat this
process for the GetTrailHandler.

public class GetTrailHandler :

➥IRequestHandler<GetTrailRequest, GetTrailRequest.Response?>
{
 private readonly IHttpClientFactory
 ➥_httpClientFactory;

 public GetTrailHandler(
 ➥IHttpClientFactory httpClientFactory)
 {
 _httpClientFactory = httpClientFactory;
 }

 public async Task<GetTrailRequest.Response?> Handle(
 ➥GetTrailRequest request, CancellationToken cancellationToken)
 {

Listing 9.16 AddTrailHandler.cs: Update to use SecureAPIClient

Listing 9.17 GetTrailHandler.cs: Update to use SecureAPIClient

The constructor now takes an
IHttpClientFactory instance
instead of an HttpClient, which
is saved to a private field.

The IHttpClientFactory
is used to get an instance
of the SecureAPIClient.

The SecureAPIClient is used to
make the API request, allowing
the access token to be attached.

The constructor now takes an
IHttpClientFactory instance
instead of an HttpClient, which
is saved to a private field.

244 CHAPTER 9 Securing Blazor applications
 try
 {
 var client = _httpClientFactory
 ➥.CreateClient("SecureAPIClient");
 return await client
 ➥.GetFromJsonAsync<GetTrailRequest.Response>(
 ➥GetTrailRequest.RouteTemplate.Replace("{trailId}",
 ➥request.TrailId.ToString()));
 }
 catch (HttpRequestException)
 {
 return new GetTrailRequest.Response(null);
 }
 }
}

And we can also update the EditTrailHander.

public class EditTrailHandler :

➥IRequestHandler<EditTrailRequest, EditTrailRequest.Response>
{
 private readonly IHttpClientFactory
 ➥_httpClientFactory;

 public EditTrailHandler(
 ➥IHttpClientFactory httpClientFactory)
 {
 _httpClientFactory = httpClientFactory;
 }

 public async Task<EditTrailRequest.Response> Handle(
 ➥EditTrailRequest request, CancellationToken cancellationToken)
 {
 var client = _httpClientFactory
 ➥.CreateClient("SecureAPIClient");
 var response = await client
 ➥.PutAsJsonAsync(EditTrailRequest.RouteTemplate,
 ➥request, cancellationToken);
 // other code omitted for brevity
}

Finally, we can update the UploadTrailImageHandler.

public class UploadTrailImageHandler :

➥IRequestHandler<UploadTrailImageRequest, UploadTrailImageRequest.Response>
{
 private readonly IHttpClientFactory
 ➥_httpClientFactory;

 public UploadTrailImageHandler(
 ➥IHttpClientFactory httpClientFactory)

Listing 9.18 EditTrailHandler.cs: Update to use SecureAPIClient

Listing 9.19 UploadTrailImageHandler.cs: Update to use SecureAPIClient

The IHttpClientFactory is
used to get an instance
of the SecureAPIClient.

The SecureAPIClient is used to
make the API request, allowing
the access token to be attached.

The constructor now takes an
IHttpClientFactory instance
instead of an HttpClient, which
is saved to a private field.

The IHttpClientFactory is used to get
an instance of the SecureAPIClient.

The SecureAPIClient is used to
make the API request, allowing
the access token to be attached.

The constructor now takes an
IHttpClientFactory instance instead of an
HttpClient, which is saved to a private field.

2459.4 Authorizing users by role

.

 {
 _httpClientFactory = httpClientFactory;
 }

 public async Task<UploadTrailImageRequest.Response> Handle(
 ➥UploadTrailImageRequest request, CancellationToken cancellationToken)
 {
 var fileContent = request.File.OpenReadStream(request.File.Size,
 ➥cancellationToken);

 using var content = new MultipartFormDataContent();
 content.Add(new StreamContent(fileContent), "image",
 ➥request.File.Name);

 var client = _httpClientFactory
 ➥.CreateClient("SecureAPIClient");
 var response = await client
 ➥.PostAsync(UploadTrailImageRequest.RouteTemplate
 ➥.Replace("{trailId}", request.TrailId.ToString()),
 ➥content, cancellationToken);
 // other code omitted for brevity
 }
}

With all the handlers updated, we can now run our application again and check that
our changes have been successful. Log in to the application and run through adding a
new trail and editing an existing one. Everything should now be working as expected.

9.4 Authorizing users by role
While some applications may need a user to be logged in only to perform actions,
often a further level of permissioning is required. One option to enable this is called
roles. The concept of roles was introduced to ASP.NET (pre-Core) and has been
around ever since. How roles are created and managed will depend on the underlying
identity provider. For server-based apps, like Blazor Server or Razor Pages, roles may
be encoded into a cookie. But for SPA applications, they are usually encoded into the
access, and/or ID tokens as a claim—which will be the case for us.

To see how roles work with Blazor, we’ll add an Administrator role to Blazing
Trails. Users who are in this role will be able to edit any trail in the system, regardless
of whether they’re the owner or not.

9.4.1 Adding roles in Auth0

Before we make any updates to our Blazor app, we’re going to head over to Auth0 and
create the administrator role and assign a user to it.

 Once you’re in the Auth0 dashboard, click the User Management option in the
left-hand menu, then select Roles. From there, click the Create button to add a new
role (figure 9.8).

The constructor now takes an
IHttpClientFactory instance instead of an
HttpClient, which is saved to a private field

The IHttpClientFactory is used to get
an instance of the SecureAPIClient.

The SecureAPIClient is used to
make the API request, allowing
the access token to be attached.

246 CHAPTER 9 Securing Blazor applications
Figure 9.8 Adding a new role to Auth0

For the role name, enter Administrator. You can then enter a description for the
role; this can be anything you wish. Once you’re done, click Create to finish. Auth0
will then create the new role and show the role settings page. From here, select the
Users tab and then click Add Users (figure 9.9).

Figure 9.9 Adding users to a role in Auth0

Enter Administrator for the name and add a
description. Then click Create to add the role.

Select Add Users to add users to the role.

Click the Users tab

2479.4 Authorizing users by role
Use the search box to find the user you wish to give the administrator role (you can
give it to multiple users if you wish), and then click Assign. The user will then be
assigned the role and appear in the list of users.

 Now we have the role created and a user assigned. The last thing we need to do in
Auth0 is tell it to include roles in the access and ID token it returns when we log in.
We’re going to update the existing rule we created earlier to include the user’s email.
This can be found under the Auth Pipeline > Rules menu. Click the Customize
Tokens rule to edit it. Then update the function with the following code.

function (user, context, callback) {
 const accessTokenClaims = context.accessToken || {};
 const idTokenClaims = context.idToken || {};
 const assignedRoles = (context.authorization
 ➥|| {}).roles;
 accessTokenClaims['http://schemas.xmlsoap.org/ws/
 ➥2005/05/identity/claims/name'] = user.email;
 accessTokenClaims['http://schemas.microsoft.com/ws/
 ➥2008/06/identity/claims/role'] = assignedRoles;
 idTokenClaims['http://schemas.microsoft.com/ws/
 ➥2008/06/identity/claims/role'] = assignedRoles;

 callback(null, user, context);
}

First, we add a new variable to hold the ID tokens claims. Then we create a new
variable to hold the roles the user is assigned to. We get these roles via context
.authorization.roles, which is an array of strings containing the names of the
roles the user is assigned to.

 Once we have the roles, we can then assign them to each token. To assign the
claim, we must pass in a claim name and a value. In this case, the claim name is
expressed as a URI, http:/./schemas.microsoft.com/ws/2008/06/identity/
claims/role. Then the value is the list of roles.

 Auth0 will now return an array of roles for each user when they log in. Let’s head
back to our Blazor app, where we can configure it to look for these roles.

9.4.2 Consuming Auth0 roles in Blazor WebAssembly

When the roles are sent from Auth0 in the access and ID tokens, they are sent as a
single claim that contains the array of roles the user is in. For example:

http:/./schemas.microsoft.com/ws/2008/06/identity/claims/role:
['Administrator', 'SomeOtherRole']

However, for Blazor to work with these roles, we need to convert this single claim into
a claim per role, like this:

http:/./schemas.microsoft.com/ws/2008/06/identity/claims/role: 'Administrator'
http:/./schemas.microsoft.com/ws/2008/06/identity/claims/role: 'SomeOtherRole'

Listing 9.20 Customize Token function in Auth0

Adds a new variable
for the ID token claims

Gets the roles the
user is assigned to

Adds the assigned roles to
the access tokens claims

Adds the assigned roles
to the ID tokens claims

248 CHAPTER 9 Securing Blazor applications

The

co

va

e
ll
The obvious question at this point is why not add multiple role claims to the Auth0
tokens so we don’t have to do this? Unfortunately, you can’t have multiple claims with
the same name in a token. Therefore, it’s down to the token consumer to handle sep-
arating array values. To do this, we will create a custom user factory. We’ll create it in
the Features > Auth folder. The following listing shows the code for the class.

public class CustomUserFactory<TAccount> :

➥AccountClaimsPrincipalFactory<RemoteUserAccount>
{
 public CustomUserFactory(IAccessTokenProviderAccessor accessor)
 ➥: base(accessor) { }

 public override async ValueTask<ClaimsPrincipal>
 ➥CreateUserAsync(RemoteUserAccount account,
 ➥RemoteAuthenticationUserOptions options)
 {
 var initialUser = await base.CreateUserAsync(
 ➥account, options);

 if (initialUser?.Identity?.IsAuthenticated ?? false)
 {
 var userIdentity = (ClaimsIdentity)initialUser.Identity;

 account.AdditionalProperties
 ➥.TryGetValue(ClaimTypes.Role, out var roleClaimValue);

 if (roleClaimValue is not null
 ➥&& roleClaimValue is JsonElement element
 ➥&& element.ValueKind == JsonValueKind.Array)
 {
 userIdentity.RemoveClaim(
 ➥userIdentity.FindFirst(ClaimTypes.Role));

 var claims = element.EnumerateArray()
 .Select(x =>
 ➥new Claim(ClaimTypes.Role, x.ToString()));

 userIdentity.AddClaims(claims);
 }
 }

 return initialUser ?? new ClaimsPrincipal();
 }
}

Our CustomUserFactory<T> inherits from the AccountClaimsPrincipal-

Factory<T> class. This class contains a virtual method we can override called Create-
UserAsync. This method is called when a user logs into the application, and its job is
to create a ClaimsPrincipal for the user. You can think of a ClaimsPrincipal like
a wallet that contains a user’s identities. However, while technically it can hold more
than one identity, it almost always contains only one.

Listing 9.21 CustomUserFactory.cs

The class inherits from the
AccountClaimsPrincipal-
Factory<T> class.

CreateUserAsync is overridden
to apply custom logic when a
user is authenticated.
Calling base.CreateUserAsync
creates a ClaimsPrincipal
representing the user.

 account.Additional-
Properties collection
ntains the claims for

the user and their
lues in JSON format.

Checks to make sure th
roleClaimValue isn’t nu
and that it is an array

Removes the original
role claim with the

roles as a string array

Generates a single role
claim for each role and

adds them to the
ClaimsIdentity representing

the current user

2499.4 Authorizing users by role
 The first thing we do is call into base.CreateUserAsync(). This method will do
all the hard work for us of constructing a ClaimsIdentity for the user—based on
the token sent back by Auth0—then bundling it up into a ClaimsPrincipal. This
means we can just focus on separating the collection of roles into individual claims.

 Next, we get the array of roles using the AdditionalProperties collection of
the RemoteUserAccount type. This is a dictionary whose key is the claim name and
the value is the claims value in JSON format. Using the TryGetValue method, we can
get the value of the role claim. We then perform a check to make sure it’s not null and
that it’s a JSON array.

 Once we know we’re dealing with an array of roles, we can remove the original role
claim from the user’s ClaimsIdentity. Then create an individual role claim for
each role in the array and add them into the ClaimsIdentity.

 We now need to hook up our CustomUserFactory so it will be called whenever a
user logs in. This is done in the Program.Main method (as shown in the next listing).

// other code omitted for brevity

builder.Services.AddOidcAuthentication(options =>
{
 builder.Configuration.Bind("Auth0", options.ProviderOptions);
 options.ProviderOptions.ResponseType = "code";
}).AddAccountClaimsPrincipalFactory

➥<CustomUserFactory<RemoteUserAccount>>();

// other code omitted for brevity

Registering the CustomUserFactory is quite simple thanks to the AddAccount-
ClaimsPrincipalFactory<T> extension method—which is chained onto the
AddOidcAuthentication method. Our CustomUserFactory is now registered
and will be called whenever a user logs into the app.

9.4.3 Implementing role-based logic

Now that we have Blazor all set up to use the roles provided by Auth0, we can get on
with updating our app to allow administrators to edit any trail. We’re going to start off
in the API and work forward to our Blazor app. We need to update three endpoints in
Features > ManageTrails:

 GetTrailEndpoint.cs

 EditTrailEndpoint.cs

 UploadTrailImageEndpoint.cs

We need to make the same change in all three endpoints, so we’ll look at GetTrail-
Endpoint.csas an example; then you can repeat the update in the other two endpoints.

 We’re going to update the existing owner check to also check for the administrator
role.

Listing 9.22 Program.cs: Registering the CustomUserFactory

Registers the CustomUserFactory
using the AddAccountClaims-
PrincipalFactory method

250 CHAPTER 9 Securing Blazor applications
if (!trail.Owner.Equals(HttpContext.User.Identity!.Name,
StringComparison.CurrentCultureIgnoreCase) &&
!HttpContext.User.IsInRole("Administrator"))

{
 return Unauthorized();
}

Users who are in the administrator role will now bypass the unauthorized check.
Repeat this change for the EditTrailEndpoint and UploadTrailImage-

Endpoint. Once that is done, we can move over to the Client.
 In BlazingTrails.Client, we need to update the HomePage component (Features >

Home) and the TrailCard component (Features > Home > Shared). In both compo-
nents, we need to update the owner check, just like we did in the API, to show the Edit
Trail button when a user is in the administrator role. The following listing shows the
update to the HomePage component.

// other code omitted for brevity

<AuthorizeView>
 @if (trail.Owner.Equals(
 ➥context.User.Identity?.Name,
 ➥StringComparison.OrdinalIgnoreCase)
 ➥|| context.User.IsInRole("Administrator"))
 {
 <button @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{trail.Id}"))" title="Edit"
 ➥class="btn btn-outline-secondary">
 <i class="bi bi-pencil"></i>
 </button>
 }
</AuthorizeView>

// other code omitted for brevity

Just as we did in the API, we’re using the IsInRole helper method to check if the cur-
rently logged-in user is an administrator. If they are, the Edit Trail button will be
shown for them. We can now perform the same update to the TrailCard component
(as shown in the following listing).

// other code omitted for brevity

<AuthorizeView>
 @if (Trail.Owner.Equals(
 ➥context.User.Identity?.Name,
 ➥StringComparison.OrdinalIgnoreCase)
 ➥|| context.User.IsInRole("Administrator"))
 {

Listing 9.23 HomePage.razor: Show Edit button for administrators

Listing 9.24 TrailCard.razor: Show Edit button for administrators

Using the IsInRole helper
method, we can allow users in
the administrator role to have
access to the Edit Trail button.

Using the IsInRole helper
method, we can allow users in
the administrator role to have
access to the Edit Trail button.

2519.4 Authorizing users by role
 <button class="btn btn-outline-secondary mt-3 float-right"
 ➥title="Edit" @onclick="@(() =>
 ➥NavManager.NavigateTo($"/edit-trail/{Trail.Id}"))">
 <i class="bi bi-pencil"></i>
 </button>
 }
</AuthorizeView>

// other code omitted for brevity

These are all the changes that are needed to allow administrators to edit trails. We can
now run the application and test our work. If you log in with the account you assigned
to the administrator role, you should see the Edit Trail button displayed for all trails
(figure 9.10).

Although we’ve not needed this functionality in Blazing Trails, it’s also good to know
that role checks are supported by the AuthorizeView component and the Autho-
rize attribute. So, if you only wanted to show some markup to users in certain roles,
you can do that like this:

<AuthorizeView Roles="SuperUser">
 <p>This will only be seen by users in the SuperUser role.</p>
</AuthorizeView>

Logged in as a user in the Administrator role

As an administrator, you will see an Edit button on all trail cards.

Figure 9.10 When
logged in as a user
in the administrator
role, the Edit Button
is present on all trail
cards.

252 CHAPTER 9 Securing Blazor applications
<AuthorizeView Roles="SuperUser, Administrator">
 <p>This will only be seen by users in the SuperUser or Administrator

role.</p>
</AuthorizeView>

The same goes for restricting access to whole pages. When applying the Authorize
attribute to a page component, it's possible to specify what roles a user must be in to
access that page:

@attribute [Authorize(Roles = "SuperUser")]

And just like the AuthorizeView, you can pass in multiple roles, if you wish:

@attribute [Authorize(Roles = "SuperUser, Administrator")]

As well as roles, Blazor also supports policies. You can find more information on them
on the Microsoft Docs site (http://mng.bz/z4rA).

Summary
 Blazor WebAssembly applications can never be made truly secure, as they run

on the client and can’t be trusted.
 Blazor WebAssembly applications commonly use token-based authentication.
 Blazor Server apps commonly use cookie-based authentication.
 When signing into a Blazor WebAssembly application via an identity provider,

two tokens are returned—an access token and an ID token.
 The ID token contains information about the user’s identity, while the access

token contains information about what they are allowed to access. However,
custom claims can be added to either one.

 The AuthorizeView component is used to show different pieces of UI based
on the user’s authorization status.

 The AuthorizeRouteView component replaces the RouteView component
in the Router to allow access to pages to be restricted using the [Authorize]
attribute.

 When calling a secure API endpoint from Blazor WebAssembly, the access token
must be included as an http header. This is done automatically when using the
BaseAddressAuthorizationMessageHandler with an HttpClient.

 An HttpClient configured to use the BaseAddressAuthorization-
MessageHandler can’t be used by unauthenticated users, as it will throw an
AccessTokenNotAvailableException.

 Blazor supports restricting access based on roles or policies.
 A role check can be done in code using the User.Identity.IsInRole()

method.
 The AuthorizeView component supports both roles and policies via its Roles

and Policy parameters.
 The Authorize attribute also supports roles and policies via its Roles and

Policy properties.

http://mng.bz/z4rA

Managing state
State management is always a hot topic in SPA applications. But what is state? Well,
state can be thought of as the sum of all data held by a system at any given point in
time. We’ve already seen lots of examples of state in previous chapters. Anywhere
we’ve created a field or property on a component to store a value is state. Users of
an application alter state all the time by performing actions within the system. They
might click a button that increments a counter or enter values in a form that trig-
ger validation.

 Sometimes user actions might alter state, which has consequences across multi-
ple components. A good example of this is when a user adds an item to their cart
on Amazon. The basket automatically updates to show the number of items it’s cur-
rently holding. This is when state management comes into play.

This chapter covers
 Persisting application state in memory

 Coordinating state across multiple components

 Organizing application state

 Persisting application state using browser local
storage
253

254 CHAPTER 10 Managing state
 State management techniques offer ways of organizing state and controlling how
state changes are propagated through an app. There are a range of options for man-
aging state, from using child events or cascading parameters—as we’ve used previ-
ously in this book—to using advanced patterns such as Flux (https://facebook
.github.io/flux/), which was invented by Facebook to manage the state in their client
applications. As always in software engineering, the solution you pick will depend on
the complexity of the problem you’re solving.

 In this chapter, we will explore managing state in Blazor using a centralized state
store. A state store is just an object that can be injected into any area of the application
and allows that component or class to access whatever state we choose to expose. We
will cover two options for this state store: the first is a simple in-memory implementa-
tion where any state will be lost when the application restarts or the user navigates
away. This is useful for handling session state that doesn’t need to be persisted across
multiple sessions. The second uses the browser’s local storage feature to persist state
across sessions. This technique is useful when you want to persist state values for a lon-
ger period.

10.1 Simple state management using an in-memory store
The simplest way to add state management to a Blazor application is via an in-memory
store. This is essentially a class that is going to store some state for the lifetime of the
user’s session. Once the session ends—which will be when the browser tab or the
browser itself is closed—the state will be lost. The state we’re going to track is that of
the Add Trail form.

 We all know how frustrating it can be when you’re filling out a large form and
something happens and everything you’ve entered is lost. There’s quite a lot of infor-
mation to complete when adding a new trail to Blazing Trails. Wouldn’t it be cool if
the form could remember what we had entered so if we didn’t submit the trail for
whatever reason, the information we entered would be there waiting for us when we
came back?

 Now, for this version of state management, there are limitations. The data is going
to be stored in memory, so if the user navigates away from the app or closes the
browser, the state will be lost. But we’ll look at how we can make state more persistent
a little later in the chapter.

10.1.1 Creating and registering a state store

The first task we have is to create a state store. This is a central place where the various
pieces of state we want to persist can be saved to and retrieved from. We’re going to
create a class called AppState that will perform this role for us.

 To keep things organized, we will create a new folder in the root of Blazing-
Trails.Client called State. In that folder, we will add the new AppState class with the
code in listing 10.1.

https://facebook.github.io/flux/
https://facebook.github.io/flux/
https://facebook.github.io/flux/

25510.1 Simple state management using an in-memory store

public class AppState
{
 private TrailDto _unsavedNewTrail = new();
 public TrailDto GetTrail()
 => _unsavedNewTrail;
 public void SaveTrail(TrailDto trail)
 => _unsavedNewTrail = trail;
 public void ClearTrail()
 => _unsavedNewTrail = new();
}

We first define a private field that will store the unsaved trail data. It’s important to
note that the field is private. Generally, you shouldn’t allow state to be altered directly.
It should be altered only via defined routes. This allows the propagation of that state
change to be handled correctly—but more on this later.

 We then have three methods that manipulate the _unsavedNewTrail field in
some way. The GetTrail method allows the retrieval of the unsaved trail data. The
SaveTrail method allows an unsaved trail to be stored. Finally, the ClearTrail
method allows the unsaved trail data to be cleared.

 Now that we’ve created our AppState class, we need to register it with the services
container so we can inject it into any components or classes that need it. We’ll head
over to Program.cs and add the following line before the await builder.Build()
.RunAsync() line:

builder.Services.AddScoped<AppState>();

This line will register our AppState class as a scoped service in our application. If you
recall from chapter 2, when we talked about service scopes in Blazor, you’ll remember
that they behave a little differently than they do in other ASP.NET frameworks. So,
when we register this service as scoped, it has the equivalent behavior of a singleton.
In fact, we could use singleton. But that wouldn’t work for Blazor Server applications
in the same way. It would provide one AppState instance that would be shared by
every user, not an instance per user. By using a scoped service, we’re ensuring the
same behavior across Blazor WebAssembly and Blazor Server.

10.1.2 Saving data entered on the form to AppState

With our AppState class set up, we can turn our attention to how we’ll save the
unsubmitted Add Trail form data. To do this, we’ll create a new component that will
sit in the form and listen for updates to the form’s model. Every time an update
occurs, we’ll take a copy of the model and store it our AppState.

 We’ll add this new component in the Features > ManageTrails > Shared folder.
However, we’re not going to add a Razor file this time; instead, we’ll add a regular
class, because this new component will have no UI element and it never will. Now, we
could easily create a regular component without any markup and just add our logic to

Listing 10.1 AppState.cs

This will store the
unsaved new trail.

Allows the unsaved trail to be retrieved

Allows an unsaved trail to be stored

This will be used when the trail is
submitted to clear the unsaved trail.

256 CHAPTER 10 Managing state

the code block. But I want to show you an alternative. There’s no right or wrong here;
it’s more about personal preference. Go ahead and add a new class called Form-
StateTracker with the following code.

public class FormStateTracker : ComponentBase
{
 [Inject]
 public AppState AppState { get; set; }
 [CascadingParameter]
 private EditContext CascadedEditContext
 ➥{ get; set; }
 protected override void OnInitialized()
 {
 if (CascadedEditContext is null)
 {
 throw new InvalidOperationException(
 ➥$"{nameof(FormStateTracker)} requires a cascading
 ➥parameter of type {nameof(EditContext)}");
 }
 CascadedEditContext.OnFieldChanged +=
 ➥CascadedEditContext_OnFieldChanged;
 }
 private void CascadedEditContext_OnFieldChanged(
 ➥object sender, FieldChangedEventArgs e)
 {
 var trail = (TrailDto)e.FieldIdentifier.Model;
 if (trail.Id == 0)
 {
 AppState.SaveTrail(trail);
 }
 }
}

To make a component from a regular class, we need to inherit from ComponentBase.
This will give us access to the various life cycle methods of a component. Because
Blazor uses property injection, we define any services we want injected by adding a
property of the correct type and decorating it with the Inject attribute. In this case,
it’s the AppState we’re injecting. Next, we define a cascading parameter of type
EditContext. This will be provided for us by the EditForm component. As we
learned in chapter 5, the EditContext is the brain of the form, and it gives us the
ability to hook into form events and gives us access to the form model.

 When the component is initialized, we’re performing a check to make sure the
EditContext isn’t null. This is to make sure the component is inside of an Edit-
Form. If the EditContext is null, then a meaningful error message will be displayed.
As long as there are no issues, we subscribe to the OnFieldChanged event of the

Listing 10.2 FormStateTracker.cs

To mark a class as a component,
we inherit from ComponentBase.

Here we’re injecting the AppState class into the
component. Blazor uses property injection, so we
decorate the property with the Inject attribute.

We capture a reference to the EditContext,
which is cascaded from the EditForm
component. This will allow us to know when
the model is updated and take a copy.

A little sanity check to
make sure the

component is used
within an EditForm. If

it’s used outside of
one, the EditContext
property will be null

and we’d see a
meaningful error in
the console or logs.

By subscribing to
the OnFieldChanged
event, we’ll be
notified every time
the model is
updated.

When the OnFieldChanged
event fires, we grab a copy
of the model.

Only new trails will have an ID of
0, so if this is the case, we save

the model to our state store.

25710.1 Simple state management using an in-memory store
EditContext. This will allow us to be notified every time a new value is entered into
the form.

 Inside the OnFieldChanged event handler, we capture the model and check if
the Id property is 0. This is to ensure we’re only saving new trail data and not a trail
being edited. If we have a new trail, we save a copy of the model to our state store.

 We can now add the FormStateTracker component to the TrailForm compo-
nent. We’ll add the following directly under the FluentValidationValidator:

<FluentValidationValidator />
<FormStateTracker />

That takes care of recording the form state, but how will we reload it? To enable that
functionality, we’re going to make a few more changes to the TrailForm. The follow-
ing listing shows the updated code.

@inject AppState AppState
// other code omitted for brevity
@code {
 // other code omitted for brevity
 public void ResetForm()
 {
 AppState.ClearTrail();
 // Other code omitted for brevity
 }
 protected override void OnParametersSet()
 {
 if (Trail is not null)
 {
 _trail.Id = Trail.Id;
 _trail.Name = Trail.Name;
 _trail.Description = Trail.Description;
 _trail.Location = Trail.Location;
 _trail.Image = Trail.Image;
 _trail.ImageAction = ImageAction.None;
 _trail.Length = Trail.Length;
 _trail.TimeInMinutes = Trail.TimeInMinutes;
 _trail.Waypoints.Clear();
 _trail.Waypoints.AddRange(
 ➥Trail.Waypoints.Select(wp => new TrailDto.WaypointDto(
 ➥wp.Latitude, wp.Longitude)));
 }
 else
 {
 _trail = AppState.GetTrail();
 }

 _editContext = new EditContext(_trail);
 _editContext.SetFieldCssClassProvider(
 ➥new BootstrapCssClassProvider());
 }
 // other code omitted for brevity
}

Listing 10.3 TrailForm.razor: Enabling reloading of form state

The AppState is injected
into the component.

When resetting the form, we also call
the ClearTrail method on AppState.
This will only get called after a new
trail has been successfully added.

If the Trail parameter is populated, it
means we’re editing a trail, so we
populate the form model using that data.

When adding a trail, attempt to
get an existing trail from AppState.
If no existing state is present, a
new blank model will be returned.

258 CHAPTER 10 Managing state
We start by injecting our AppState into the component. Next, we add a call to the
ClearTrail method on our state store to the ResetForm method. This method is
called only when a new trail has been successfully added. This makes it an ideal point
to remove any state we have stored about that trail, making it ready for the next new
trail the user might add.

 The last change is to the OnParametersSet method. We’ve given it a bit of a refac-
tor to enable it to load any new trail state stored in AppState. We start with a check on
the Trail parameter. If this has a value, then we’re editing a trail and we populate the
model with that data. Otherwise, we attempt to get the saved trail data from the state
store. If there isn’t any state saved, then this method will return a new model that can
just be passed straight to the EditContext, which makes things quite neat.

 That’s it for our changes! We’ve now added the ability to persist any unsaved
changes to the Add Trail form. You can go ahead and run the application and test
the feature. If you head to the Add Trail form and enter some data into the form,
then navigate back to the home page, and back to the Add Trail form, you should
see the data you entered still present in the form.

10.2 Improving the AppState design to handle more state
The current design of our AppState class works great when we’re tracking state for
only one feature. But what happens when we want to track various bits of state across
the application? Just dumping lots of properties and methods in a single class would
become a tangled ball of mud very quickly, and maintenance would be a nightmare.
So how can we improve our AppState design and make it extendable and maintain-
able? The answer—multiple state stores.

 We’re going to extract the current state we’ve placed in the AppState class into a
new class called NewTrailState. Then we’re going to refactor the AppState class to
reference that new state container. Essentially, we’re going to turn the AppState class
into a hub where we can access any state in the application from one place.

 To get started, let’s extract the current state into a new container called NewTrail-
State.cs. The following listing shows the code for the class. This should sit alongside the
existing AppState class in the State folder.

public class NewTrailState
{
 private TrailDto _unsavedNewTrail = new();
 public TrailDto GetTrail()
 => _unsavedNewTrail;
 public void SaveTrail(TrailDto trail)
 => _unsavedNewTrail = trail;
 public void ClearTrail()
 => _unsavedNewTrail = new();
}

Listing 10.4 NewTrailState.cs

The existing property and
methods from the AppState
class are now here.

25910.2 Improving the AppState design to handle more state
We can now head back to the AppState class and make the necessary changes there.
The following listing shows the updated code.

public class AppState
{
 public NewTrailState NewTrailState { get; }
 public AppState()
 {
 NewTrailState = new NewTrailState();
 }
}

The AppState now just contains a single property that holds an instance of the Add
Trail state. Once again, you’ll notice it’s read-only. As we mentioned earlier in the
chapter, state shouldn’t be altered directly but rather through defined routes. In this
case, the AppState class is going to make sure the NewTrailState is initialized
correctly.

 You can see this design will be much easier to work with as more state is added.
Each piece of new state is defined in its own class, then is referenced from the central
AppState. This means we still only work with a single AppState object in our classes
and components, but we can hook into any piece of state across the application, if we
need to.

 Before we move on, we just need to fix a few build errors that resulted from our
refactoring. The first fix is in the FormStateTracker (Features > ManageTrails >
Shared) class. We need to replace the following line in the OnFieldChanged
handler:

AppState.SaveTrail(trail);

with this line:

AppState.NewTrailState.SaveTrail(trail);

The other fixes are in the TrailForm component. The first is in the ResetForm
method. Here we replace

AppState.ClearTrail();

with

AppState.NewTrailState.ClearTrail();

The second fix is in the OnParametersSet method. We need to replace

var newTrail = AppState.GetTrail();

with

var newTrail = AppState.NewTrailState.GetTrail();

Listing 10.5 AppState.cs: Updated to be a state hub

Allows access to the
NewTrailState object

Initializes the
NewTrailState

260 CHAPTER 10 Managing state
With those changes in place, we should now have an application that builds again. You
can run it up and check that everything is still working as it was before.

10.3 Creating persistent state with browser local storage
So far, we’ve created a simple state store and had a couple of components write some
state and read it out again. In this section, we will implement something a bit more
complex. We’re going to add a new feature to Blazing Trails that allows users to mark
trails as favorites. Figure 10.1 shows what this feature will look like once we’re done.

Figure 10.1 The finished home page, which allows users to mark trails as favorites
and displays the current number of favorite trails they have.

However, to make this feature as useful as possible, we don’t want it to be just for logged-
in users; we want anonymous users to be able to take advantage of this as well. In order
to achieve this, we will use the browser’s local storage system to persist the data. This will
allow anonymous user selections to be maintained between visits to the site.

The number of favorite trails is displayed in the header.

Trails can be marked as favorites using a new Favorite button on the TrailCard.

26110.3 Creating persistent state with browser local storage

T

exp
rea

nd
 to
NOTE It’s worth noting that the browser’s local storage is not limitless. The
HTML spec recommends an arbitrary limit of 5 megabytes per origin (https://
www.w3.org/TR/webstorage/#disk-space), and this is what all the major
browsers support.

We’re also going to display the current number of favorite trails the user has in the
header; this will need to change in real time as trails are marked/unmarked as favorites.

10.3.1 Defining an additional state store

We start by creating the state store for the new favorite trails feature. This store will be
much more complex than our previous one, as it will be responsible for reading and
writing to local storage and for triggering an event when the state changes to allow
subscribed components to react.

 Before we create the new state store, we’re going to add a NuGet package to help
us work with local storage—Blazored.LocalStorage. This is one of my creations
and was the first NuGet package I ever published. Normally, to use the browser’s local
storage, we’d need to use JavaScript interop. By using this NuGet package, we can
avoid that and just inject an interface into any component that wants to save or read
data from local storage.

Add the following package reference to the BlazingTrails.Client.csproj file:

<PackageReference Include="Blazored.LocalStorage" Version="4.1.2" />

The only other thing we must do to configure the new package is to add the following
line to the Program.Main method:

builder.Services.AddBlazoredLocalStorage();

This will add the necessary services to the services container so we can inject them into
our components or classes.

 Now let’s focus on getting our new state store in place. In the State folder, add a
new class called FavoriteTrailsState and then add the following code.

public class FavoriteTrailsState
{
 private const string FavouriteTrailsKey = "favoriteTrails";
 private bool _isInitialized;
 private List<Trail> _favoriteTrails = new();
 private readonly ILocalStorageService _localStorageService;
 public IReadOnlyList<Trail> FavoriteTrails =>
 ➥_favoriteTrails.AsReadOnly();
 public event Action? OnChange;
 public FavoriteTrailsState(
 ➥ILocalStorageService localStorageService)
 {
 _localStorageService = localStorageService;
 }

Listing 10.6 FavoriteTrailsState.cs

The current favorited trails are kept in a private
list so they can’t be manipulated directly.

he favorite
trails are

osed via a
d-only list.

The OnChange event allows
concerned components to
subscribe to changes in the store.

The ILocalStorageService interface is
provided by Blazored.LocalStorage a
gives us the ability to read and write
the browser’s local storage feature.

https://www.w3.org/TR/webstorage/#disk-space
https://www.w3.org/TR/webstorage/#disk-space

262 CHAPTER 10 Managing state
 public async Task Initialize()
 {
 if (!_isInitialized)
 {
 _favoriteTrails = await _localStorageService
 ➥.GetItemAsync<List<Trail>>(FavouriteTrailsKey)
 ➥?? new List<Trail>();
 _isInitialized = true;
 NotifyStateHasChanged();
 }
 }
 public async Task AddFavorite(Trail trail)
 {
 if (_favoriteTrails.Any(_ => _.Id == trail.Id)) return;
 _favoriteTrails.Add(trail);
 await _localStorageService
 ➥.SetItemAsync(FavouriteTrailsKey, _favoriteTrails);
 NotifyStateHasChanged();
 }
 public async Task RemoveFavorite(Trail trail)
 {
 var existingTrail = _favoriteTrails
 ➥.SingleOrDefault(_ => _.Id == trail.Id);
 if (existingTrail is null) return;
 _favoriteTrails.Remove(existingTrail);
 await _localStorageService
 ➥.SetItemAsync(FavouriteTrailsKey, _favoriteTrails);
 NotifyStateHasChanged();
 }
 public bool IsFavorite(Trail trail)
 => _favoriteTrails.Any(_ => _.Id == trail.Id);
 private void NotifyStateHasChanged()
 => OnChange?.Invoke();
}

Once again, we’re storing the state in a private field. Looking at this class, it’s more
apparent why we don’t want to allow the list of favorite trails to be manipulated
directly—we need to ensure the OnChange event is raised for every update of the
favorites. However, consumers do need access to the list, and we expose it as an
IReadOnlyList. The Trail type in both lists is the Trail from the Home feature.
However, we’ll be moving it to a more appropriate location shortly.

 Next, we define an OnChange event, which will allow consumers of our state to
subscribe to changes in the store. To make the code a bit tidier, this event will be trig-
gered by a private method called NotifyStateHasChanged, which is at the end of
the class. Any method that needs to let consumers know of state changes will call that
method, which in turn raises the event.

 In the constructor, we’re specifying a dependency on the ILocalStorage-
Service. This service is provided by Blazored.LocalStorage and will be the inter-
face into the browser’s local storage APIs.

This will be called when the
application initially boots in
order to set up the store.

This adds a trail to the list of favorites and
persists a copy of the favorite trails to local

storage. Finally, it calls NotifyState-
HasChanged, which is responsible for

triggering the OnChange event.

This method will do the reverse
of the AddFavorite method. It
removes the trail from the list
of favorites and saves the
update to local storage before
calling NotifyStateHasChanged.

This is a simple helper method we will
use to check if a trail is a favorite.

This method is responsible for
raising the OnChange event, which
notifies subscribers that something
has changed in the store.

26310.3 Creating persistent state with browser local storage
 Now we come to the first of the public methods, Initialize. This method will be
called when the application first starts up. Its job is to set up the state store for use.
After checking that it’s not already initialized, it will attempt to load any existing favor-
ite trails from local storage. After that, it will make the store as initialized and call
NotifyStateHasChanged.

 The AddFavorite and RemoveFavorite methods do exactly what their names
imply. They either add or remove a trail from the list of favorites and then persist the
updated list to local storage. Finally, they call NotifyStateHasChanged to signal a
change has occurred.

 Finally, we have the IsFavorite method. This is a helper method we will use in a
bit to check if a trail is a favorite or not.

 Now that we’ve defined our new state store, we need to add it to the AppState
class. The following listing shows the updates.

public class AppState
{
 private bool _isInitialized;
 public NewTrailState NewTrailState { get; }
 public FavoriteTrailsState FavoriteTrailsState
 ➥{ get; }
 public AppState(
 ➥ILocalStorageService localStorageService)
 {
 NewTrailState = new NewTrailState();
 FavoriteTrailsState =
 ➥new FavoriteTrailsState(localStorageService);
 }
 public async Task Initialize()
 {
 if (!_isInitialized)
 {
 await FavoriteTrailsState.Initialize();
 _isInitialized = true;
 }
 }
}

We expose the new FavoriteTrailsState via a read-only property as we did for the
NewTrailState. In the constructor, we’re now injecting an instance of the
ILocalStorageService, which we use when newing up FavoriteTrailsState.

 Next, we’ve added a new method called Initialize. This method gives us a cen-
tral place to initialize any child state stores. In our case, we only have one, but in larger
applications there could be many. Once the child state store is initialized, we can mark
the AppState as initialized.

Listing 10.7 AppState.cs: Adding the FavoriteTrailState

The new FavoriteTrailsState
is exposed as a read-only
property.

The FavoriteTrailState is
newed up passing in the
ILocalStorageService.

The Initialize method gives us
a central place to initialize
any child state stores.

Here we initialize the
FavoriteTrailsState store.

We mark the AppState as
initialized once all child

stores have been initialized.

264 CHAPTER 10 Managing state

e
e.
10.3.2 Adding and removing trails from the
favorites list

In order to add and remove trails from the
favorites list, we will add a button to the Trail-
Card component and to the list view on the
home page. When this button is clicked, the
trail will either be added or removed from the
list of favorites, depending on whether it is cur-
rently a favorite or not. Figure 10.2 shows what
this button will look like on the TrailCard.

 We could just add the button and any
required logic directly into the TrailCard and
HomePage components directly. But a better
option is to create a new component to encap-
sulate this new functionality. For now, we will
add this new button component into the Shared
folder in the Home feature. Add a new compo-
nent called FavoriteButton.razor with the
following code.

@inject AppState AppState
@if (AppState.FavoriteTrailsState.IsFavorite(Trail))
{
 <button class="btn btn-outline-primary ml-1"
 ➥title="Favorite" @onclick="@(() =>
 ➥AppState.FavoriteTrailsState.RemoveFavorite(Trail))">
 <i class="bi bi-heart-fill"></i>
 </button>
}
 else
 {
 <button
 ➥class="btn btn-outline-primary ml-1" title="Favorite"
 ➥@onclick="@(() =>
 ➥AppState.FavoriteTrailsState.AddFavorite(Trail))">
 <i class="bi bi-heart"></i>
 </button>
 }
@code {
 [Parameter, EditorRequired]
 public Trail Trail { get; set; } = default!;
}

We start by injecting the AppState into the component. Next, we check if the trail
passed to the component is a favorite using the IsFavorite method on Favorite-
TrailsState. If it is, then we render a button with an onclick handler that calls the

Listing 10.8 FavoriteButton.razor

The Favorite button that
marks a trail as a favorite

Figure 10.2 The new Favorite button
on the TrailCard component

Which button to render is
determined by checking if th
trail it represents is a favorit

If the trail is a favorite, a button
with an onclick handler to

remove the trail is rendered.

If the trail isn’t a favorite, a
button with an onclick handler

to add the trail is rendered.

26510.3 Creating persistent state with browser local storage
RemoveFavorite method on FavoriteTrailsState. Otherwise, we render a but-
ton that calls the AddFavorite method.

 We can now add our FavoriteButton to the TrailCard and HomePage compo-
nents. Let’s start with the TrailCard.

 Directly after the markup for the View button, add the following line:

<FavoriteButton Trail="Trail" />

Then on the HomePage component, add the same line directly above the existing
View button. We can run the app and check that everything is working (figure 10.3).

Figure 10.3 The Favorite button in its two states

You should be able to click the Favorite button on the different TrailCards and
toggle between the two states.

10.3.3 Displaying the current number of favorite trails

We’re going to add some text to the header component to display the current number
of favorite trails a user has. Along with this text, we’ll include a link to a new page that
will allow the user to browse those trails. This number is going to update in real time
whenever they mark/unmark a trail as a favorite. Let’s look at the code.

@using BlazingTrails.Client.Features.Auth
@inject AppState AppState

Listing 10.9 Header.razor: Adding current favorite trails

The Favorite button showing
the trail is not a favorite

The Favorite button showing
the trail is a favorite

266 CHAPTER 10 Managing state
@implements IDisposable
<nav class="navbar mb-3 shadow">

</nav>
<div class="container d-flex justify-content-between">
 <p>You have
 ➥@AppState.FavoriteTrailsState.FavoriteTrails.Count
 ➥ favorite trails
 ➥</p>
 <LoginStatus />
</div>
@code {
 protected override void OnInitialized()
 => AppState.FavoriteTrailsState.OnChange
 ➥+= StateHasChanged;
 void IDisposable.Dispose()
 => AppState.FavoriteTrailsState.OnChange
 ➥-= StateHasChanged;
}

We start by making a small structural change. We’ve added a new div, which contains
the new favorite trails text as well as the login component. This div uses some built-in
Flexbox styles from Bootstrap to align the two elements on the same line but at oppo-
site ends. Then we’ve added a new p tag that contains the new text as well as the favor-
ite trail count—which is pulled directly from AppState.

In the logic block, when the component initializes, we’re subscribing to the
OnChange event and having it trigger a StateHasChanged call. This will allow the
component to re-render whenever the FavoriteTrailsState is updated and give
us that real-time count.

 Before we run this, we need to make one small change to the login component
(Features > Auth). We need to remove the container class from the root div element.
The line

<div class="container text-right">

should change to

<div class="text-right">

With that change complete, we can test our changes. When you run the app and mark
and unmark trails as favorites, you’ll notice the count in the new text changes in line
with the button clicks.

10.3.4 Reorganizing and refactoring

In a second, we will add a new page for displaying the user’s favorite trails. But before
we add this new page, we need to do some quick reorganizing and refactoring.

This new div uses Flexbox to allow
the new favorite trails text and

the original login component to
be positioned on the same line.

The new favorite trails text displays the number of
trails pulled from AppState and provides a link to a
new favorite trails page, which we’ll create shortly.

When the component initializes, it
subscribes to the OnChange event
exposed by FavoriteTrailsState.

When subscribing to events, it’s
always best practice to unsubscribe
from them using IDisposable.

26710.3 Creating persistent state with browser local storage

The new favorites page will use the TrailCard component, as well as the Trail-
Details and FavoriteButton. These components are now needed across multiple
features, so we’re going to move them into a new folder called Shared at the root of the
Features folder. The TrailCard and TrailDetails components both use the
Trail class, which has been sitting alongside them in the Home > Shared folder.
We’ll move this class as well.

 The last piece of housekeeping we’re going to do is create a new component that
can be displayed when there are no trails. If you recall, we have already created some
markup that does this on the home page. But we need that same code for the new
favorites page as well. In the new Features > Shared folder, create a new component
called NoTrails.razor with the following code.

<div class="no-trails">
 <svg viewBox="0 0 16 16" class="bi bi-tree" fill="currentColor"
 ➥xmlns="http://www.w3.org/2000/svg">
 <path fill-rule="evenodd" d="M8 0a.5.5 0 0 1 .416.223l3 4.5A.5.5

➥0 0 1 11 5.5h-.098l2.022 3.235a.5.5 0 0 1-.424.765h-.191l1.638 3.276a.5.5
➥0 0 1-.447.724h-11a.5.5 0 0 1-.447-.724L3.69 9.5H3.5a.5.5 0 0

➥1-.424-.765L5.098 5.5H5a.5.5 0 0 1-.416-.777l3-4.5A.5.5 0 0 1 8 0zM5.934

➥4.5H6a.5.5 0 0 1 .424.765L4.402 8.5H4.5a.5.5 0 0 1 .447.724L3.31
➥12.5h9.382l-1.638-3.276A.5.5 0 0 1 11.5 8.5h.098L9.576 5.265A.5.5 0 0 1

➥10 4.5h.066L8 1.401 5.934 4.5z" />
 <path d="M7 13.5h2V16H7v-2.5z" />
 </svg>
 <h3 class="text-muted font-weight-light">
 @ChildContent
 </h3>
</div>
@code {
 [Parameter]
 public RenderFragment? ChildContent { get; set; }
}

The markup for the component is a copy of what is currently rendered on the home
page when there are no trails in the system. The one change is that the hardcoded
text in the h3 tag has been replaced with the contents of the ChildContent param-
eter. This parameter is a RenderFragment, as the message that the home page dis-
plays contains a hyperlink. It wouldn’t be possible to render this correctly if we used a
simple string type for the parameter.

 The NoTrails component also needs some styling. Let’s add a new file called
NoTrails.razor.scss with the following code.

.no-trails {
 text-align: center;

Listing 10.10 NoTrails.razor

Listing 10.11 NoTrails.razor.scss

This component will replace the
markup on the home page, which
contains a hyperlink. In order to
render the link, we must use a
RenderFragment instead of having
a simple string parameter.

Provides the necessary styles
for the no-trails component

268 CHAPTER 10 Managing state
 margin-top: 100px;
 svg {
 width: 200px;
 color: #dee2e6;
 margin-bottom: 30px;
 }
}

These styles are a lift-and-shift from the styles for the home page component. They set
various margins and ensure the SVG (Scalable Vector Graphic) is the correct size and
is centered on the page.

 At this point we can update the HomePage component (Features > Home) to use
the new NoTrails component. Remove all of the markup in the else block of the
_trails.Any() check. Then add the following code:

<NoTrails>
 We currently don't have any trails, why not add

one?
</NoTrails>

We can also delete the HomePage.razor.scss file because the styles it contained are no
longer needed. They are now part of the NoTrails component.

10.3.5 Showing favorited trails on the favorite trails page

With our refactoring complete, we can add the new page, which will display the favor-
ited trails. We’ve already added a link to this new page in the header text we added.
We just need to create it and hook it up to our AppState to load the trails.

 Let’s go ahead and create a new feature folder called FavoriteTrails (Features >
FavoriteTrails) and add a new component to it called FavoriteTrailsPage.razor.
The code for this new page is shown in the following listing.

@page "/favorite-trails"
@inject AppState AppState
@implements IDisposable

<PageTitle>Favorite Trails - Blazing Trails</PageTitle>

<nav aria-label="breadcrumb">
 <ol class="breadcrumb">
 <li class="breadcrumb-item">Home
 <li class="breadcrumb-item active" aria-current="page">
 ➥Favorite Trails

</nav>

<h3 class="mt-5 mb-4">Favorite Trails</h3>

Listing 10.12 FavoriteTrailsPage.razor

26910.3 Creating persistent state with browser local storage
@if (AppState.FavoriteTrailsState.FavoriteTrails.Any())
{
 <TrailDetails Trail="_selectedTrail" />
 <div class="grid">
 @foreach (var trail in AppState.FavoriteTrailsState.FavoriteTrails)
 {
 <TrailCard Trail="trail"
 ➥OnSelected="HandleTrailSelected" />
 }
 </div>
}
else
{
 <NoTrails>
 You don't have any favorite trails :(
 </NoTrails>
}
@code {
 private Trail? _selectedTrail;
 protected override void OnInitialized()
 => AppState.FavoriteTrailsState.OnChange
 ➥+= StateHasChanged;
 private void HandleTrailSelected(Trail trail)
 => _selectedTrail = trail;
 void IDisposable.Dispose()
 => AppState.FavoriteTrailsState.OnChange -= StateHasChanged;
}

Most of this code should be looking very familiar by now. We check for any favorite
trails in AppState and then render them using the TrailCard. If the user doesn’t
have any favorites, then we display the new NoTrails component, passing in an
appropriate message.

Down in the logic block, when the page initializes, we’re subscribing to the
OnChange event. When this event fires, it will call the StateHasChanged method
and trigger a re-render of the page. This covers the scenario where the user chooses
to remove one of the trails listed on the page from favorites. Performing this action
will trigger the OnChange event in the state store and, in turn, cause the page to
re-render, removing the trail.

 At this point, we can go ahead and run the app and test the new page out. Mark a
few trails as favorites from the home page and then click the link in the header to view
the new page (figure 10.4).

If we have favorite trails, we
loop over them and display
a TrailCard for each one.

If there are no favorite trails, we
display the NoTrails component.

When the page initializes, it subscribes to the
OnChange event of the FavoriteTrailsState.

This is so if the user unfavorites a trail on the
page, it will trigger a re-render and the page

will be updated, removing that trail.

270 CHAPTER 10 Managing state
Figure 10.4 The new favorites page displaying favorited trails

If all has gone to plan you should see the trails you favorited. You should also be able
to unfavorite them and see them disappear from the page.

10.3.6 Initializing AppState

You might have noticed while testing the changes we’ve made that hard-refreshing
the app (clicking the Refresh button in the browser or pressing F5) loses the state. In
fact, the favorited trails are being persisted to the browser’s local storage; we’re just
not reloading them when the app boots up. Let’s fix this.

 We’re going to call the Initialize method on the AppState in the App compo-
nent, which lives in the root of the Client project. The following listing shows the
updates to App.razor.

@inject AppState AppState
// other code omitted for brevity
@code {
 protected override async Task OnAfterRenderAsync(bool firstRender)
 {
 if (firstRender)
 {

Listing 10.13 App.razor: Initializing AppState on app startup

The Favorite Trails page displaying the two trails marked as favorites

271Summary
 await AppState.Initialize();
 }
 }
}

We’ve overridden the OnAfterRenderAsync life cycle method and used its first-
Render parameter to ensure we only attempt to initialize the AppState once. As
we’re using Blazor WebAssembly, we could technically use the OnInitializedAsync
life cycle method instead. However, that wouldn’t be compatible with Blazor Server.

 Now that we are initializing the AppState, we can run the application to test
things. If you already had trails favorited, you should see they are now showing imme-
diately when the app boots up. If you didn’t, favorite a few trails and perform a hard
refresh and you should see they now show when the app restarts.

Summary
 State is the sum of all data held by a system at any given point in time.
 Users manipulate state in an application by performing actions within the sys-

tem, such as clicking buttons and entering text.
 Managing state can range from simple communication between a parent and

child component to full-blown patterns such as Flux.
 A simple in-memory state store can be achieved by using a scoped class that is

injected via DI wherever it’s needed.
 State values shouldn’t be mutated directly; they should be mutated only

through methods so propagation of the state change can be handled correctly.
 Splitting related state into individual stores that are accessed via a single parent

store is a good way to keep large volumes of state maintainable.
 The browser’s local storage feature can be used to persist state values across

user sessions.

On the first render of the App
component, we initialize the AppState.

Testing your
Blazor application
Testing is a very important aspect of writing applications. When we have good tests
in place, we can produce higher quality applications, faster—Blazor applications
are no exception. When it comes to testing Blazor apps, the three most common
programmatic testing options are:

 Unit testing
 Integration testing
 End-to-end testing

Unit testing is the lowest level of testing we can utilize. When writing these types of
tests, we focus on testing the smallest piece of functionality we can—such as a single
method in a class. Due to this, these types of tests are extremely fast—individual

This chapter covers
 Creating a bUnit test project

 Writing tests that verify rendered markup

 Mocking authentication and authorization in
tests

 Testing components that use JavaScript interop
272

27311.1 Introducing bUnit
tests run in milliseconds—which is handy, as we tend to write more unit tests than any
other type. There are several frameworks available to help write unit tests. The three
most common are xUnit (https://xunit.net), NUnit (https://nunit.org), and MSTest
(http://mng.bz/2nea).

Integration testing is a level up from unit testing. In these tests, we combine several
components of the system and test them together, checking that they integrate with
each other correctly. These types of tests tend to use the same frameworks as unit tests,
but as they are testing more complex scenarios, they can take longer to run than unit
tests. An example of integration testing is a test that checks when data is posted to an
API endpoint and saves it into the database.

End-to-end testing (E2E testing) is yet another level higher. These types of tests aim
to exercise the entire system end to end, hence their name. When writing these tests
for web applications, special frameworks are used to operate a headless browser. A head-
less browser is essentially a regular browser running without its UI. It is controlled pro-
grammatically, usually via the command line.

 Using a headless browser allows the application to be rendered as it would be for a
real user. Tests are written that perform the same actions as a user might, such as click-
ing buttons and navigating between pages. Due to this level of complexity, these tests
are the slowest to run. It is common for E2E tests to take several seconds to execute, if
not longer, depending on the complexity of the test. A good tool for writing E2E tests
is Playwright (https://playwright.dev/). Using Blazing Trails, an example E2E test
would be checking that when the View button on the trail card was clicked, the Trail
Details drawer opened and displayed the correct trails information—testing the full
stack of the application from UI to database.

 In this chapter, we will learn how to write tests using a library called bUnit. bUnit
has been written specifically to help test Blazor components and has many interesting
features that we’ll explore. We can use bUnit to write unit tests that test individual
methods on our components. But we can also use it to write integration tests that
check to ensure several components are working together.

 We’ll start by introducing bUnit and some of its key features. Then we’ll cover add-
ing a bUnit test project to the Blazing Trails application. Once our test project is up
and running, we’ll start adding tests and exploring how bUnit’s various features can
help us do that efficiently.

11.1 Introducing bUnit
bUnit is a testing library specifically designed for Blazor. It was created and is main-
tained by Egil Hansen—a Microsoft MVP. It’s also supported by the .NET Foundation.
The library sits on top of existing testing frameworks such as xUnit, NUnit, and MSTest,
which run the tests in the same fashion as a regular unit test. This is an important point
to understand, as unlike other UI-testing frameworks, bUnit doesn’t require a browser.
This means that tests written with bUnit are extremely fast, executing in milliseconds

http://mng.bz/2nea
https://playwright.dev/
https://xunit.net/
https://nunit.org

274 CHAPTER 11 Testing your Blazor application
compared to seconds in traditional browser-based UI tests. Some of the key features of
bUnit are:

 Interacting and inspecting components under test
 Injecting services or passing parameters and cascading values into components

under test
 Having built-in test doubles for IJSRuntime, authentication and authorization

services, and HttpClient
 Triggering event handlers in components
 Verifying outcomes using a semantic HTML comparison

Another interesting feature of bUnit is the ability to write tests using either .cs files or
.razor files. When using the .cs file approach, tests look identical to standard unit tests
for regular C# classes. However, when using .razor files, we can write markup directly
into the test code, which makes writing tests much easier. This is the approach we’ll be
using in this chapter—more details on this later.

 For a complete breakdown of all the features bUnit offers, as well as the official
documentation, I encourage you to check out https://bunit.dev.

11.2 Adding a bUnit test project
Before we can start writing any bUnit tests for Blazing Trails, we need to set up a test
project in the solution. There are two options for this:

 Installing and using the bUnit project template
 Manually installing the bUnit components in a regular test project

By far the simplest option when you don’t already have an existing test project is
option 1. This is what we’ll cover in this section. However, if you have a solution with

What is a test double?
Test double is a generic term used to describe an object that replaces a production
object in a test scenario.

Test doubles can take many different forms, such as a fake. Fakes are objects that
have working implementations tailored for testing. The Blazored LocalStorage test
extensions provide a fake for the browser’s local storage feature, which stores data
in memory instead of calling into the browser’s APIs. This allows tests to be per-
formed on the code without the need for a physical browser.

Other examples of test doubles are:

 Mocks
 Stubs
 Dummies

For further reading on test doubles, I recommend this post by Martin Fowler: https://
martinfowler.com/bliki/TestDouble.html.

https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://bunit.dev

27511.2 Adding a bUnit test project
an existing test project that you would like to add bUnit to, the bUnit documentation
covers the steps needed to do that: http://mng.bz/aJoX.

 To install the bUnit project template, we can run the following .NET CLI
command:

dotnet new --install bunit.template

This will install the latest version of the bUnit project template. It’s also possible to
pass a specific template version to the command:

dotnet new --install bunit.template::1.3.42

Now that we have the bUnit project template installed, we can then create a new proj-
ect with it. Navigate to the folder that contains the BlazingTrails.sln file and then run
the following command:

dotnet new bunit -o BlazingTrails.Tests

This will create a new folder called BlazingTrails.Tests and will create all the necessary
project files within it. While we’re here, we can also add the test project to the solution
using this command:

dotnet sln add BlazingTrails.Tests/BlazingTrails.Tests.csproj

We can now switch back over to Visual Studio. If you already have the solution open,
you will be prompted to reload it. Otherwise, open the solution, and you should now
see the new test project in the Solution Explorer (figure 11.1).

The template has two example files that we need to remove: Counter.razor and
CounterCSharpTests.cs. We will then create a new folder called Client. This folder will
house any tests we write for components in the BlazingTrails.Client project. We’ll also

The new bUnit
test project

Figure 11.1 Example of the new bUnit
test project displayed in the Solution
Explorer window of Visual Studio

http://mng.bz/aJoX

276 CHAPTER 11 Testing your Blazor application
create a ComponentLibrary folder. This will hold any tests for the BlazingTrails
.ComponentLibrary project.

 At this point, the test project is ready to go, but we’re going to perform a few addi-
tional steps. First, we’ll install a package called AutoFixture (https://github.com/Auto-
Fixture/AutoFixture). AutoFixture is useful when writing tests, as it can generate fake
test data. This helps make the setup or arrange phase of our tests much simpler, as we
don’t have to spend loads of time newing up objects and assigning dummy data to
each property.

 We will also add a package called Blazored.LocalStorage.TestExtensions.
This provides us with an in-memory implementation of LocalStorage that allows us
to test code that uses the Blazored LocalStorage library.

 Let’s add the following package references to the BlazingTrails.Tests project file:

<PackageReference Include="AutoFixture" Version="4.17.0" />
<PackageReference Include="Blazored.LocalStorage.TestExtensions"

Version="4.1.5" />

The next step is to add some using statements to the root _Imports.razor file. These
are going to help us a little later when writing our tests. Open the file and add the fol-
lowing lines:

@using Microsoft.AspNetCore.Components.Authorization
@using Microsoft.AspNetCore.Components.Forms
@using Microsoft.Extensions.DependencyInjection
@using AutoFixture
@using Bunit.JSInterop.InvocationHandlers
@using MediatR
@using BlazingTrails.Client.State
@using BlazingTrails.Client.Features.Shared

All that’s left for us to do is add a couple of references to the projects that contain
the components we’re going to test. These are the BlazingTrails.Client and
BlazingTrails.ComponentLibrary. You can do this using either the .NET CLI or
Visual Studio.

 For Visual Studio, complete the following steps:

1 Right-click on Dependencies under the BlazingTrails.Tests project.
2 Select Add Project Reference . . .
3 Select both the BlazingTrails.Client and BlazingTrails.ComponentLibrary

projects.
4 Click OK to add the references.

From the .NET CLI, navigate to the BlazingTrails.Tests folder and run the following
commands:

dotnet add reference ../BlazingTrails.Client
dotnet add reference ../BlazingTrails.ComponentLibrary

https://github.com/AutoFixture/AutoFixture
https://github.com/AutoFixture/AutoFixture

27711.3 Testing components with bUnit
At this point, the new bUnit test project is all set up and ready for us to start writing
some tests!

11.3 Testing components with bUnit
We can now focus on writing tests that verify the functionality of some of the compo-
nents in Blazing Trails. We’re not going to write tests that cover all the components in
the application; instead, we’ll focus on testing select components that cover the most
common testing scenarios:

 Testing rendered markup
 Triggering event handlers in tests
 Testing components that use authentication and authorization
 Testing components that make JavaScript interop calls
 Testing multiple components

As I mentioned earlier in the chapter, we’ll be writing our tests in .razor files. This is a
highlight feature of bUnit and offers us a major advantage over writing our tests in .cs
files—the ability to use templated Razor delegates. Templated Razor delegates allow us to
write markup directly into our C# test code with IntelliSense! Let’s look at a quick
example to understand the advantage. We’ll pretend we have a greeting component
that outputs a simple message (see the following listing).

<h1>Hey! @Name. Testing with bUnit is awesome.</h1>

@code
{
 [Parameter]
 public string Name { get; set; }
}

The following listing shows what a simple test for that component looks like in a .cs
file.

[Fact]
public void RendersGreeting()
{
 var cut = RenderComponent<Greeter>(
 ➥parameters => parameters.Add(p => p.Name, "Robyn"));

 cut.MarkupMatches(
 ➥"<h1>Hey! Robyn. Testing with bUnit is awesome.</h1>");
}

Listing 11.1 Example Greeter component

Listing 11.2 Example bUnit test written in a .cs file

The RenderComponent method
renders the component under
test (cut), and we pass in any

parameter values needed.

Markup is verified using a string
literal of the expected output.

278 CHAPTER 11 Testing your Blazor application
The RenderComponent method is used to specify which component we want to test.
We can also pass in the value for the Name parameter using ComponentParameter-
CollectionBuilder<TComponent>. Finally, we verify the expected markup using a
string literal. Now let’s look at that same test in a .razor file.

@code
{
 [Fact]
 public void RendersGreeting()
 {
 var cut = Render(@<Greeter Name="Robyn" />);
 cut.MarkupMatches(
 ➥@<h1>Hey! Robyn. Testing with bUnit is awesome.</h1>);
 }
}

This time we’re using templated Razor delegates to define the component under test
as well as the expected output. We start a templated Razor delegate by using the @ sym-
bol. From there we can type arbitrary markup. The markup can even span multiple
lines if required.

 Hopefully you can see the benefit of writing tests using this method. The code is
easier to read at a glance, and we avoid the use of string literals. The fact that we also
get IntelliSense with this method is a bonus.

11.3.1 Testing rendered markup

The first tests we’re going to write are probably the simplest type we can perform—
testing rendered markup. The component we’re to test is the FavoriteButton com-
ponent that we added in chapter 10. Let’s dive into the test code, and then we’ll break
it all down to see what’s going on.

 First, we add a new folder for these tests. We’ll mimic the folder structure of the
project in order to make tests easy to find. Let’s start by creating a Features folder in
the Client folder; then we can add a Shared folder inside that.

 Inside the new Shared folder, we add a new component called FavoriteButton-
Tests.razor. Then we can add the following code.

@inherits TestContext
@code
{
 private readonly Fixture _fixture = new();

 public FavoriteButtonTests()
 {

Listing 11.3 Example bUnit test written in a .razor file

Listing 11.4 FavoriteButtonTests.razor

The @ symbol marks the
start of a templated Razor
delegate, allowing markup to
be written inside C# code.

The expected output is defined as
HTML, not a string literal.

Inheriting from the bUnit TestContext
gives us access to the features of bUnit.

The Fixture class is from
AutoFixture, and we use it to
create test data in the tests.

27911.3 Testing components with bUnit

bU

wh
cr
o

 this.AddBlazoredLocalStorage();
 this.Services.AddScoped<AppState>();
 }

 [Fact]
 public void RendersAddFavoriteButton_When_TrailIsNotFavorited()
 {
 // Arrange
 var testTrail = _fixture.Create<Trail>();

 // Act
 var cut = Render(
 ➥@<FavoriteButton Trail="testTrail" />);

 // Assert
 cut.MarkupMatches(
 @<button class="btn btn-outline-primary ml-1"
 ➥title="Favorite">
 <i class="bi bi-heart"></i>
 </button>
);
 }
}

We first inherit from the TestContext base class provided by bUnit. This base class
provides all the bUnit functionality from creating and rendering components under
test to verifying the markup they produce.

 Then we have the _fixture field. This stores an instance of the Fixture class,
provided by AutoFixture. We use this to generate test data in our tests. We could new
this up in each test, but by doing it once here, it helps keep our test code clean by
avoiding repetition.

 Next comes the constructor. The constructor is a great place to add setup code
required for each test within the file. In this case, we’re configuring the service con-
tainer. As the FavoriteButton requires an instance of the AppState class to be
injected, we must set up the required services so bUnit can inject them when it renders
the component being tested. First, we’re calling the AddBlazoredLocalStorage
extension method provided by the Blazored.LocalStorage.TestExtensions
package we installed earlier. This package was specifically designed to provide test dou-
bles of the Blazored LocalStorage services in bUnit tests. This extension method regis-
ters those test doubles, which provide an in-memory implementation of LocalStorage.
We need this, as the AppState class uses Blazored LocalStorage. The next line sets up
the AppState as a scoped service in the container, just as we did in the Blazing-
Trails.Client project.

 On to the first test. The test is set up to use the arrange, act, assert (AAA) pattern. This
is a widely used testing pattern across the industry. It arranges a test into three steps:

This registers the various services needed
to provide an in-memory local storage
implementation that can be used for testing.

As the FavoriteButton relies on
AppState, we need to add it to the

test context’s service container so it
can be injected into the component.

The fixture instance is used
to create a Trail instance
with dummy data.

nit provides the
Render method,
ich allows us to

eate an instance
f the component
we want to test.

Using the MarkupMatches
method, we can verify the
markup produced from
the rendered component.

280 CHAPTER 11 Testing your Blazor application
1 Arrange—Creates or configures any objects that are used in the execution of
the test

2 Act—Invokes the component or method under test
3 Assert—Verifies that the action of the component or method being tested pro-

duces the desired result

In our arrange phase, we’re creating the test data—an instance of the Trail class—by
using the _fixture.Create<T> method. In the act phase, we render the compo-
nent under test, the FavoriteButton, using the Render method provided by
bUnit’s TestContext class. This returns us an IRenderedFragment, which we can
use in the assert phase to check the markup that was produced.

 bUnit’s MarkupMatches method uses semantic markup verification to confirm if the
component has rendered the expected markup. Here we’re using the templated
Razor delegate syntax to define what we expect the final markup to be. If the expected
markup matches what the component rendered, the test will pass.

Semantic markup verification
A common issue when writing UI tests that verify markup is fragile tests—tests that
break when something as simple as the order of attributes on an element changes
or extra whitespace is added or removed. bUnit’s MarkupMatches method uses
semantic comparison of markup when verifying output. This means that a change in
the order of attributes or insignificant whitespace will not break a test.

For example, if we had a component that outputted the following markup, we could
write a test that verified this:

<button type="button" title="A button">A Button</button>

By using bUnit’s MarkupMatches method, if the output from the component
changed to

<button title="A button" type="button">A Button </button>

then the test would still pass, as the output is still semantically the same. The order
change of the attributes and the additional whitespace in the button text would still
produce the same visually rendered output in a browser.

This is only the tip of the iceberg when it comes to bUnit’s semantic comparisons.
You can also do all the following when verifying markup:

 Ignore attributes
 Ignore entire elements
 Perform case-insensitive comparisons
 Use regex during comparison
 Configure whitespace handling

If you want to dive deeper into these features of bUnit, I would recommend reading
the documentation on the semantic HTML comparison found at https://bunit.dev/
docs/verification/semantic-html-comparison.

https://bunit.dev/docs/verification/semantic-html-comparison
https://bunit.dev/docs/verification/semantic-html-comparison

28111.3 Testing components with bUnit
Now we have our first test in place testing that our FavoriteButton renders cor-
rectly when the trail is not a favorite. Let’s add an additional test to check for the
inverse condition. It’s always a good practice when writing tests to check all potential
conditions. The following listing shows the code for the new test.

[Fact]
public async Task RendersRemoveFavoriteButton_When_TrailIsFavorited()
{
 // Arrange
 var testTrail = _fixture.Create<Trail>();

 var appState = this.Services.GetService<AppState>();
 await appState.FavoriteTrailsState
 ➥.AddFavorite(testTrail);

 // Act
 var cut = Render(@<FavoriteButton Trail="testTrail" />);

 // Assert
 cut.MarkupMatches(
 @<button class="btn btn-outline-primary ml-1"
 ➥title="Favorite">
 <i class="bi bi-heart-fill"></i>
 </button>
);
}

As you can see, most of this test is the same as the previous one. The key difference is
in the arrange phase, where we are setting up the conditions for the test. First, we cap-
ture a reference to the AppState instance in the services container. Then we add
the testTrail to the list of favorites so when AppState is injected into the
FavoriteButton, the trail will be in the list of favorites and trigger the desired
functionality.

 In the assert phase, we’ve once again used the MarkupMatches method to verify
that the correct markup is produced.

11.3.2 Triggering event handlers

A common need when testing components is to trigger events. Probably the most
common example of this is triggering a button click. The FavoriteButton compo-
nent we’re testing should add or remove the trail it represents from AppState when
the button it renders is clicked. Let’s write a couple of tests to explore how we trigger
these types of events with bUnit.

 The first test we’ll write will make the trail a favorite. The second will remove it as a
favorite. Listing 11.6 shows the code.

Listing 11.5 FavoriteButtonTests.razor: FavoriteButton render test

Retrieves the AppState
instance from the
services container

Adds the testTrail to the list
of favorites in AppState

Verifies that the desired
markup is produced

282 CHAPTER 11 Testing your Blazor application
[Fact]
public void AddTrailToFavorites_When_TrailIsNotAFavorite()
{
 // Arrange
 var testTrail = _fixture.Create<Trail>();
 var cut = Render(
 ➥@<FavoriteButton Trail="testTrail" />);
 var button = cut.Find("button");

 //Act
 button.Click();

 // Assert
 var appState = this.Services.GetService<AppState>();
 Assert.True(
 ➥appState.FavoriteTrailsState.IsFavorite(testTrail));
}

[Fact]
public async Task RemoveTrailFromFavorites_When_TrailIsFavorite()
{
 // Arrange
 var testTrail = _fixture.Create<Trail>();
 var appState = this.Services.GetService<AppState>();
 await appState.FavoriteTrailsState
 ➥.AddFavorite(testTrail);
 var cut = Render(@<FavoriteButton Trail="testTrail" />);
 var button = cut.Find("button");

 //Act
 button.Click();

 // Assert
 Assert.False(appState.FavoriteTrailsState.IsFavorite(testTrail));
}

For these tests, you can see that we have moved the rendering of the Favorite-
Button to the arrange phase. This is because the rendering of the component is no
longer the trigger for the functionality we’re testing. We need to render the compo-
nent and then search its markup for the button element it produces. We do this using
the Find method. This method takes a CSS selector as an argument and returns the
first element that matches the selector. There is also a FindAll method that does the
same thing but returns a list of matching elements.

 Once we have a reference to the button rendered by the component, we can
mimic a user click by calling the Click method. When calling this method, bUnit will
make sure the handler for this event is executed on the component and perform any
re-rendering.

 Finally, we can assert that the desired state has been achieved. We do this by check-
ing that the trail is now a favorite using the IsFavorite method on AppState. We

Listing 11.6 FavoriteButtonTests.razor: Testing add/remove trail

The rendering of the component is
now part of the arrange phase.

Once the component is rendered, we can
use the Find method to capture a reference
to the button element in its markup.

Instructs bUnit to execute
the button’s click event

We assert that
the trail has
been added
to the list of
favorites in
AppState.

The testTrail is added to the
list of favorites during the

arrange phase so we can
check the inverse condition.

28311.3 Testing components with bUnit

au

th
could also check that the component re-rendered with different markup, but we
already have the first two tests verifying that behavior. Also, I find it’s best to keep to
one logical assertion per test so it’s clear what is being tested.

 The second test is essentially a mirror of the first but with some additional setup so
the trail starts as a favorite and can be removed by the click event.

11.3.3 Faking authentication and authorization

Now that we have mastered the fundamentals of writing bUnit tests, let’s move on to
something a little more advanced—testing components requiring authentication and
authorization. This is always a tricky subject with testing, but bUnit has built-in func-
tionality that makes it a breeze.

 To learn about this type of testing, we’re going to write some tests for the Trail-
Card component. This component renders an Edit button when the logged-in user is
the owner of the trail. It also renders the Edit button when the logged-in user is in the
administrator role. We’ll write a test for each of these scenarios. Let’s create these new
tests in a Razor file called TrailCardTests.razor. This can be added to the same Shared
folder as the FavoriteButtonTests.razor file. The following listing shows the initial
setup code and first test.

@inherits TestContext

@code
{
 private readonly TestAuthorizationContext
 ➥_authContext;
 private readonly Fixture _fixture = new();

 public TrailCardTests()
 {
 this.AddBlazoredLocalStorage();
 this.Services.AddScoped<AppState>();
 _authContext = this.AddTestAuthorization();
 }

 [Fact]
 public void RendersEditButton_When_UserIsAuthorized()
 {
 // Arrange
 var authorizedUser = "Test User";
 _authContext.SetAuthorized(authorizedUser);
 var testTrail = _fixture.Create<Trail>();
 testTrail.Owner = authorizedUser;

 // Act
 var cut = Render(@<TrailCard Trail="testTrail" />);

 // Assert

Listing 11.7 TrailCardTests.razor

Allows the TestAuthorizationContext
to be shared across multiple tests

Adds and sets up the
necessary auth services and
infrastructure for testing

To save repeating the username in
multiple strings, we create it as a variable.

Sets up
thorized user

with the given
username in

e test context

The owner of the trail is set equal to
the username of the authorized user.

284 CHAPTER 11 Testing your Blazor application
 var editButton = cut.Find(
 ➥"button[title=\"Edit\"]");
 Assert.NotNull(editButton);
 }
}

The first new element introduced in this test file is the _authContext field. This
holds a reference to a TestAuthorizationContext, which is set up in the construc-
tor. We use this to set up the desired auth conditions for each test. Essentially, the
TestAuthorizationContext is a set of test doubles for Blazor’s authentication and
authorization system.

 Inside the arrange phase of the test, we create a variable with the username of
the authorized user we want to set up. We can then reference this variable instead of
using multiple string literals with the same value. Next, we instruct the Test-
AuthorizationContext to set up an authorized user with the given username. We
then set the trail owner property to the name of the authorized user.

 Once the component has been rendered, we find the Edit button in the markup of
the component and assert that it exists.

 Now on to the next test. This time we’re going to check that an authorized user in
the administrator role can also see the Edit button. The following listing shows the
new test.

[Fact]
public void RendersEditButton_When_UserIsAdmin()
{
 // Arrange
 var authorizedUser = "Admin User";
 _authContext.SetAuthorized(authorizedUser);
 _authContext.SetRoles("Administrator");
 var testTrail = _fixture.Create<Trail>();

 // Act
 var cut = Render(@<TrailCard Trail="testTrail" />);

 // Assert
 var editButton = cut.Find("button[title=\"Edit\"]");
 Assert.NotNull(editButton);
}

This test is very similar to the previous one. The key difference is the call to _auth-
Context.SetRoles. Here we specify that the user is in the administrator role. You’ll
also notice that we don’t set the Owner property on the test trail instance. This will be
given a random string value by AutoFixture consisting of the name of the property
and a random GUID. So, it couldn’t match that of the authorizedUser variable. We
then render the component and assert that the Edit button exists as we did in the pre-
vious test.

Listing 11.8 TrailCardTests.razor: Testing role-based auth

The Find method is used
to retrieve the Edit button.

Verifies that the Edit button is
present in the rendered markup

This time we specify the role the
authorized user should belong to.

Notice we don’t set the
owner of the trail equal
to the username of the
authenticated user.

28511.3 Testing components with bUnit
 As you can see, bUnit’s features for testing components relying on auth conditions
is very straightforward and results in simple, easy-to-understand tests. If you need to
set policies or arbitrary claims in your tests, bUnit has you covered here as well. You
can use the SetPolicies and SetClaims methods on the TestAuthorization-
Context to configure either of these scenarios, or both!

11.3.4 Emulating JavaScript interactions

Writing tests for components that interact with JavaScript poses an interesting prob-
lem. bUnit is not running in a browser context; therefore there is no JavaScript run
time to interact with. So how do we test components requiring JavaScript interop? The
answer—we fake it.

bUnit ships with its own implementation of the IJSRuntime interface. This imple-
mentation has two modes:

 Strict mode—Requires a test to set up all expected JavaScript calls explicitly. Any
call not set up will throw an exception.

 Loose mode—Returns the default value from any JavaScript invocation without
needing to set up the call ahead of time

It’s worth noting that the bUnit implementation of IJSRuntime is active by default in
tests and is set to use strict mode.

 To see this in action, we’re going to write some tests for the RouteMap component
in the BlazingTrails.ComponentLibrary project. We’ll start by adding some new fold-
ers to the test project. At the root of the project, add a folder called ComponentLibrary;
then add a folder inside that called Map. Once that is done, we can add our test file,
RouteMapTests.razor, to the Map folder. Now go ahead and add the following code to
the new test file.

@using BlazingTrails.ComponentLibrary.Map
@inherits TestContext

@code {
 private BunitJSModuleInterop _routeMapModule;
 private JSRuntimeInvocationHandler _routeMapModuleInitializeInvocation;

 public RouteMapTests()
 {
 _routeMapModule = JSInterop.SetupModule();
 _routeMapModuleInitializeInvocation =
 ➥_routeMapModule.SetupVoid("initialize", _ => true)
 ➥.SetVoidResult();
 }

 [Fact]
 public void InitializesMap_When_ComponentFirstRenders()
 {

Listing 11.9 RouteMapTests.razor

Sets up the call that imports
the routeMap JavaScript
module for all tests in the file

Sets up the call to the
initialize function on
the routeMap module

286 CHAPTER 11 Testing your Blazor application
 // Arrange / Act
 var cut = Render(@<RouteMap />);

 // Assert
 _routeMapModuleInitializeInvocation
 ➥.VerifyInvoke("initialize", calledTimes: 1);
 }
}

In the constructor, we start by setting up the call the RouteMap component makes to
import the routeMap JavaScript module when it first renders. We do this using the
SetupModule method. As the RouteMap component imports only one module, we’re
using the parameterless overload of SetupModule. This will match any call in the
component under test that attempts to import a module. However, if we were import-
ing more than one module in the component under test, we might choose to use
another overload that requires the path of the module being imported to be speci-
fied. That way we could set up an expected invocation for each module call to make
sure they are all imported.

 Next, we set up the call to the initialize function on the routeMap module.
This is a void call and doesn’t return a value, so we use the SetupVoid method. As
with the SetupModule method, we could use its parameterless overload to match any
InvokeVoidAsync call within the component being tested—the RouteMap compo-
nent has only one anyway. But as we’ve already seen that approach, it’s worth seeing
how the more explicit option works.

 In this case, we’re specifying the name of the function being called, and then we
use a lambda, which returns true to indicate that the function can be called with any
arguments. The most explicit setup we could do is to specify the name of the function
and the exact arguments it is invoked with. But this is useful only in scenarios where
multiple calls are made to the same function with different values and you need to ver-
ify each variation.

Finally, we chain a call to the SetVoidResult method. By default, bUnit’s Java-
Script run-time implementation will return an incomplete task from InvokeVoid-
Async calls, which the component under test will await until a call to SetVoidResult
is made. By chaining it to the setup, we ensure it is called immediately.

 Note the chained call to SetVoidResult. bUnit will return an incomplete task
from any InvokeVoidAsync call, which the component will await until SetVoid-
Result is called. By chaining this method call here, we ensure that the task will be
completed as soon as the JavaScript call is made.

 Now we move on to the test. The test checks that the JavaScript elements of the
map are initialized when the component first renders. There is no test-specific setup
required here, so we’ve collapsed the arrange and act step into one and just rendered
the RouteMap component. In the assert phase, we’re verifying that a call was made to
the initialize function and that it was called only once.

As there is no test-specific setup
needed, the Arrange and Act
step are collapsed into one.

The call to the initialize
function is verified,
including that it
happened only once.

28711.3 Testing components with bUnit
 Let’s move on and write a second test. This one is going to confirm that a Java-
Script interop call is made when the Delete Last Waypoint button is clicked. The fol-
lowing listing shows the code.

[Fact]
public void

CallsDeleteLastWaypointFunction_When_DeleteLastWaypointButtonClicked()
{
 // Arrange
 var latLongResult = new LatLong(1m, 2m);
 var plannedInvocation = _routeMapModule
 ➥.Setup<LatLong>("deleteLastWaypoint", _ => true)
 ➥.SetResult(latLongResult);
 var cut = Render(@<RouteMap />);
 var deleteWaypointButton = cut.Find(
 ➥"button[title=\"Delete last waypoint\"]");

 // Act
 deleteWaypointButton.Click();

 // Assert
 plannedInvocation.VerifyInvoke("deleteLastWaypoint", calledTimes: 1);
}

In this test, we’re checking for a JavaScript invocation that expects a return value.
When clicking the Delete Last Waypoint button, the component expects the Java-
Script call to return an object containing the latitude and longitude of the waypoint
being removed. To set this up, we use the Setup<T> method—the type parameter is
the type we’re expecting back in the call. Again, we’re using an overload that requires
us to specify the name of the function being called, but we’re using the lambda to
state that we don’t care about the arguments it’s called with. We’re chaining the
SetResult method this time and passing in the latLongResult to be returned to
the component when it invokes the call.

 As we’ve done in previous tests, we’re rendering the component, finding the
Delete button, and executing its click event. We then verify that the deleteLast-
Waypoint function was called once.

11.3.5 Testing multiple components

The final test we’re going to write will test multiple components working together.
We’ll be using the HomePage component as our example this time. We will check that
when the View Trail button is clicked on a TrailCard, the TrailDetails compo-
nent is rendered and displays the details of the correct trail. As part of these tests, we’ll
also see how we can stub out MediatR calls.

 We’ll start by creating the folder structure and then the stub for the MediatR call
made by the HomePage component. Inside the Client > Features folder in the test

Listing 11.10 RouteMapTests.razor: Testing JavaScript calls

This is a dummy result
to be returned from the
JavaScript interop call.

Sets up the expected
JavaScript invocation to return
the dummy latLongResult

288 CHAPTER 11 Testing your Blazor application

.

.

project, create a new folder called Home. Then add a new C# class called Get-
TrailsHandler.cs. Next, add the following code.

public class GetTrailsHandler : IRequestHandler<GetTrailsRequest,
GetTrailsRequest.Response>

{
 public async Task<GetTrailsRequest.Response> Handle(
 ➥GetTrailsRequest request, CancellationToken cancellationToken)
 {
 var fixture = new Fixture();
 var dummyTrails = fixture
 ➥.CreateMany<GetTrailsRequest.Trail>();

 return new GetTrailsRequest.Response(dummyTrails);
 }
}

We’ve created a handler that is almost identical to the production one in the Client
project. The key difference is it doesn’t talk to the API. Instead, it uses AutoFixture to
generate some dummy data that can be returned to the component being tested. This
is an example of a test stub.

 With the test stub in place, we can move on to creating our test file. In the same
folder, add a file called HomePageTests.razor with the following code.

@using BlazingTrails.Client.Features.Home
@inherits TestContext

@code {
 public HomePageTests()
 {
 this.AddBlazoredLocalStorage();
 this.AddTestAuthorization();
 this.Services.AddScoped<AppState>();
 this.Services.AddMediatR(
 ➥typeof(HomePageTests).Assembly);
 }

 [Fact]
 public void RendersTrailDetails_When_TrailSelected()
 {
 // Arrange
 JSInterop.Mode = JSRuntimeMode.Loose;
 var cut = Render(@<HomePage />);
 var trailCards =
 ➥cut.FindComponents<TrailCard>();
 var viewButton = trailCards[0].Find(
 ➥"button[title=\"View\"]");

 // Act
 viewButton.Click();

Listing 11.11 GetTrailsHandler.cs

Listing 11.12 HomePageTests.razor

AutoFixture is used to
create a list of dummy
trails to return.

Sets up MediatR to use the test
stub by having it scan the test
project assembly for handlers

The TrailDetails
component renders the
RouteMap component,

which makes JS interop
calls, so we need to set
the JSInterop mode to

Loose; otherwise
we would need to
set up every call.

The FindComponents method allows us to
retrieve all instances of the specified
component within the rendered component
We can then find the View button on the
first TrailCard instance and trigger its click
event to render the TrailDetails component

289Summary
 // Assert
 var trailDetails = cut.FindComponent<TrailDetails>();

 var isOpen = trailDetails.Find(
 ➥"div.drawer-wrapper.slide");
 Assert.NotNull(isOpen);

 Assert.Equal(trailCards[0].Instance.Trail.Name,
 ➥trailDetails.Instance.Trail.Name);
 }
}

We’ve seen most of the code in the constructor before; the only new item is the call to
AddMediatR. Here we’re telling MediatR to scan the test project’s assembly for any
handlers. This will register our stub handler so it will be called when the HomePage
component is rendered.

 The first step inside the test method is to set the JSInterop mode to Loose. This
is because the TrailDetails component contains the RouteMap component, which
makes JavaScript interop calls. Without setting the mode to Loose, we’d need to set
up each of the calls it makes, and they’re not relevant in this test.

 After rendering the HomePage, we use the FindComponents method to retrieve
all instances of the TrailCard component rendered within the HomePage. We then
take the first TrailCard, find its View button, and execute its click event.

 Finally, we use the FindComponent method to retrieve the TrailDetails com-
ponent. Once we have that, we assert that it is open by checking the presence of the
slide CSS class. This class is applied only when the drawer is open. Then we ensure
that it has the correct trail data by checking the trail name against the name of the
trail whose View button was clicked.

Summary
 There are three different types of automated testing we can use to test Blazor

applications: unit tests, integration tests, and end-to-end tests.
 Unit tests check a small piece of logic in isolation, such as a method in a class.
 Integration tests are a level higher than unit tests, testing multiple components

of a system together.
 End-to-end tests are a level above integrations tests and test a whole system from

UI to database.
 bUnit is a testing library designed specifically to test Blazor components.
 bUnit can be used to write both unit tests and integration tests.
 bUnit works with the three most common testing frameworks: xUnit, NUnit,

and MSTest.
 bUnit tests can be written in with .cs or .razor files.

The first assert verifies that the drawer is open by
checking that the slide class has been applied.

The second assert verifies
that the Trail.Name on the
TrailDetails component
matches that of the trail whose
View button was clicked.

290 CHAPTER 11 Testing your Blazor application
 Writing bUnit tests in .razor files is preferred, as we can use the templated
Razor delegate syntax to write markup directly into the C# test code.

 bUnit comes with test doubles for IJSRuntime, HttpClient, and authentica-
tion and authorization services.

appendix A
Adding an ASP.NET

Core backend to a Blazor
WebAssembly app

In this appendix, I’ll cover the steps required to add an ASP.NET Core backend to
an existing Blazor WebAssembly application. The backend will be made up of an
ASP.NET Core Web API, a .NET class library, and an SQLite database. It’s worth
pointing out that if you’re starting a new project, then there is a template included
that contains this exact setup, minus the database. It’s called the Blazor WebAssem-
bly ASP.NET Core hosted template (covered in chapter 2). So, if you’re starting
fresh, I would recommend using that and avoid the manual steps presented in this
appendix.

NOTE We’ll be working on the Blazing Trails application from its state at
the end of chapter 4. If you’re building along with the chapters in this
book, you’ll need to complete this appendix before working through
chapter 5.

A.1 Adding an ASP.NET Core Web API
We’ll start by adding the Web API project first. Figure A.1 shows the starting point
for our solution.

 We’re going to add a new Web API project called BlazingTrails.Api. When add-
ing a new project to an existing solution, I prefer to do so from the command line
using the .NET CLI. I find it a bit quicker than clicking through the menus in
Visual Studio or in other IDEs—but use the method that works best for you.
291

292 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
Navigate to the folder containing the solution file and then execute the following
command:

dotnet new webapi -n BlazingTrails.Api

With this command, we’re asking the CLI to create a new Web API project with the
name BlazingTrails.Api. After a second or two, the project will be created. To add the
new project to the existing solution, we then run this command:

dotnet sln add BlazingTrails.Api\BlazingTrails.Api.csproj

You should see a message stating that the project has been added to the solution. At
this point, you can open the solution in Visual Studio, or reload it if it was already
open. You should see the new API project in the solution explorer (figure A.2).

We have now successfully added our API project to the solution. Next, we need to
clear out some of the boilerplate code included by the template, then configure it to
work with our Blazor app. By the time we’re done, the BlazingTrails.Api project will be
the startup project for the solution and will serve the Blazor WebAssembly application.

Solution

Blazor WebAssembly
project

Figure A.1 The starting point
for our solution. It currently
contains a single Blazor
WebAssembly application.

The new API project
shown in Visual Studio’s
Solution Explorer

Figure A.2 The new API
project is now part of the
existing solution.

293A.1 Adding an ASP.NET Core Web API
A.1.1 Removing boilerplate from the new API project

A new ASP.NET Core Web API comes with an example controller called Weather-
ForecastController and a WeatherForecast class. These are handy examples to
have when first learning to build Web APIs, but they’re not of any use to us. So, the
first thing we will do is delete the WeatherForecast class from the root of the proj-
ect and delete the entire Controllers folder, along with the WeatherForecast-
Controller inside it.

 New APIs also come with Swagger installed. Swagger is a fantastic tool for docu-
menting APIs, and depending on what you want from your API project, you might
want to leave this in place; however, the API we’re configuring is purely for our Blazor
app, so we’re going to remove it. There are three steps to doing this.

1 Remove the Swagger NuGet package from the project (Swashbuckle.AspNet-
Core).

2 Remove the Swagger services and middleware from Program.cs.
3 Remove the launchUrl property from the launchSettings.json file in the Prop-

erties folder.

After completing those steps, all traces of Swagger will be removed from the project
and we can focus on configuring it for our Blazor app.

A.1.2 Configuring the API

Now that we have a clean project to work from, we can start to configure it for our
needs. To start, we’re going to reference a NuGet package that allows us to configure
the API to serve the Blazor application. In the csproj file, add the following package
reference. Alternatively, the package can be added using the NuGet package manager
GUI in Visual Studio:

<PackageReference Include="Microsoft.AspNetCore.Components.WebAssembly.Server"
Version="6.0.0" />

This package contains middleware that is going to enable the API project to serve
the Blazor WebAssembly application. With that in place, we can head over to the
Program.cs file to make some modifications. Replace the code in the file with that
shown in the following listing.

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();

var app = builder.Build();

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{

Listing A.1 Program.cs: Configuration to serve the Blazor app

294 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
 app.UseWebAssemblyDebugging();
}

app.UseHttpsRedirection();

app.UseBlazorFrameworkFiles();
app.UseStaticFiles();

app.UseRouting();

app.MapControllers();
app.MapFallbackToFile("index.html");

app.Run();

The key points to note in the changes are the addition of the UseWebAssembly-
Debugging middleware. This allows us to still debug our Blazor WebAssembly code
once we switch to using the API as the startup project.

 Next, we’ve added the UseBlazorFrameworkFiles() and UseStaticFiles()
middleware. Together, these allow the API to serve the Blazor application files. After
all, a Blazor WebAssembly application, once compiled, is just a set of static files.

 The other change to note is the addition of the MapFallbackToFile endpoint.
This instructs the API to route any requests that don’t match one of its endpoints to
the Blazor application so it can try and handle it.

 We’re going to jump back over the to the launchSettings.json file next. In here,
we’ll add in a couple of lines, as shown in the next listing.

"profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:
 ➥{url.port}/_framework/debug/ws-proxy?
 ➥browser={browserInspectUri}",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "BlazingTrails.Api": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:
 ➥{url.port}/_framework/debug/ws-proxy?
 ➥browser={browserInspectUri}",
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }

Listing A.2 Configuring launchSettings.json for debugging

This middleware enables the debugging
of Blazor WebAssembly code.

This middleware enables the API
to serve the Blazor application.

This middleware enables static
files to be served by the API.

If a request doesn’t match to a controller, serve
the index.html file from the Blazor project.

The inspectUri property
enables Blazor WebAssembly
debugging in Visual Studio,
Visual Studio for macOS,
and Visual Studio Code.

295A.1 Adding an ASP.NET Core Web API
The lines we’ve just added enable Blazor WebAssembly debugging in the Visual Studio
family of IDEs and text editors. Currently, this feature isn’t supported on other IDEs
such as JetBrains Rider.

 The inspectUri enables Visual Studio to recognize that it is running a Blazor
WebAssembly app. It will then attempt to connect the script debugging infrastructure
to Blazor’s debugging proxy. You may notice that the value for the inspectUri has a
few placeholders in it; these will be substituted by the framework during the debug-
ging session and don’t require any manual configuration.

 The final piece of configuration we need to do is add a project reference from the
BlazingTrails.Api project to the BlazingTrails.Web project, shown in figure A.3.

Under the API project, right-click Dependencies and select Add Project Reference
from the context menu. This will open the Reference Manager (figure A.4).

Add a project reference by
right-clicking on Dependencies
and selecting Add Project Reference.

Figure A.3 Adding a project
reference in Visual Studio

Select the BlazingTrails.Client project to
establish the dependency. Then click OK.

Figure A.4 The Reference
Manager is used to configure
project dependencies and other
references such as DLLs.

296 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
In the Reference Manager, check the box next to the BlazingTrails.Client project and
then click OK. This will configure the dependency.

 Before we run the solution, we just need to set the API project as the startup proj-
ect. To do this, right-click on the API project and select Set as Startup Project from the
context menu. We can now run the application. If everything has gone well, we should
see the Blazor application shown in figure A.5.

Figure A.5 The running Blazor application being served by the new API project

If you check out the URL in the address bar, you’ll see that the application is now run-
ning using the API project’s port and not the Client project’s port, as it was previously.

A.2 Adding a .NET class library to share code
between client and API
With the API project in place and configured to serve the Blazor application, we’re
now going to add in a .NET class library. This library will be used to share code
between the Client and API projects—one of the major advantages to building full-
stack ASP.NET applications with Blazor.

Note the application is running from the port of the API project.

297A.2 Adding a .NET class library to share code between client and API
 We’ll use the .NET CLI to create the project, just as we did with the API. Starting
from the folder containing the solution file, we run the following command to gener-
ate the new project:

dotnet new classlib -n BlazingTrails.Shared

This will generate a new .NET class library called BlazingTrails.Shared and will put the
files for it in a directory with the same name. We can then add it to the solution with
the sln add command:

dotnet sln add BlazingTrails.Shared\BlazingTrails.Shared.csproj

At this point, if you swap back to Visual
Studio, you should see the new project
in the solution explorer (figure A.6).
You may be prompted to reload the solu-
tion if it was open while you were run-
ning the CLI commands.

 To access any shared code from either
the Client or API projects, we need to set
up project references between them and
the Shared project. We do this the same
way as we did earlier. Starting with the
API project, right-click on the Depen-
dencies node and select Add Project
Reference… to bring up the Reference
Manager dialog box (figure A.7).

Figure A.7 Adding a project reference via the Reference Manager in Visual Studio

The new Shared project shown in
Visual Studio’s Solution Explorer

Figure A.6 The new Shared project is now part of
the existing solution.

Check the box next to BlazingTrails.Shared to
create the project reference. Then click OK.

298 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
From the dialog box, check the box next to the BlazingTrails.Shared project and then
click OK. This will create the project reference. We can then repeat this process for
the Client project.

 The final step for us to do is remove the Class1.cs file that is generated as part of
the project. This is an empty class file and doesn’t contain anything of any value. At
this point, you should have an empty Shared project containing no files.

A.3 Setting up an SQLite database in the API
In this final section, we’re going to complete the setup of our backend by configuring
an SQLite database in the API project. I’ve chosen to use SQLite for this book, as it’s a
portable database that works cross-platform. You could easily swap this out for a data-
base of your choice, be that SQL Server, MySQL, or whatever you prefer. To interact
with the database, we’ll use Entity Framework Core (http://mng.bz/aJKx), a popular
object-relational mapper (ORM) from Microsoft.

First, we’re going to create a new folder in the BlazingTrails.Api project called Per-
sistence. This folder is going to contain all the infrastructure needed for the data layer
of the application (figure A.8).

Inside this folder, we create two more folders, Data and Entities. Finally, we will add a
new class to the root of the Persistence folder called BlazingTrailsContext.cs.

 We also need to add some NuGet packages. The following package references can
be added directly to the BlazingTrails.Api.csproj file; alternatively, the packages can be
added via the NuGet package manager GUI in Visual Studio:

<PackageReference
Include="Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore"
Version="6.0.0" />

The new Persistence
folder that will act
as our data layer

Figure A.8 The new
Persistence folder in
the API project

http://mng.bz/aJKx

299A.3 Setting up an SQLite database in the API
<PackageReference Include="Microsoft.EntityFrameworkCore.Tools"
PrivateAssets="all" Version="6.0.0" />

<PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite"
Version="6.0.0" />

These commands will install Entity Framework Core, the EF Core SQLite provider, as
well as some tooling to help us generate and manage migrations later on.

A.3.1 Configuring the initial entities for the system

Before we can do any work with the context, we need to create the initial entities for
our system. We will create two entities called Trail and RouteInstruction. These are just
going to be POCOs (Plain Old CLR Object), which represent the information we
want to save to the database for each type.

 Inside the Entities folder, create a class called Trail.cs and add in the following
code.

public class Trail
{
 public int Id { get; set; }
 public string Name { get; set; } = default!;
 public string Description { get; set; } = default!;
 public string? Image { get; set; }
 public string Location { get; set; } = default!;
 public int TimeInMinutes { get; set; }
 public int Length { get; set; }

 public ICollection<RouteInstruction> Route
 ➥{ get; set; } = default!
}

As you can see, there isn’t a lot to this class; it just defines the properties that make up
a trail. The only thing worth pointing out is the Route collection at the bottom. This is
a navigation property and will help create a one-to-many relationship between a
Trail and RouteInstructions. In the case of a Trail, we’re saying that it can
have many RouteInstructions.

 Let’s create a new class for RouteInstruction next. The code is shown in the fol-
lowing listing.

public class RouteInstruction
{
 public int Id { get; set; }
 public int TrailId { get; set; }
 public int Stage { get; set; }
 public string Description { get; set; } = default!;

 public Trail Trail { get; set; } = default!;
}

Listing A.3 Trail.cs: Trail class

Listing A.4 RouteInstruction.cs: RouteInstruction class

Route is a navigation property
and will help create a one-to-
many relationship between a
Trail and RouteInstructions.
Here we’re saying a Trail has
many RouteInstructions.

Trail creates the other side
of the one-to-many
relationship. This states
that each RouteInstruction
can have one Trail.

300 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
In the code for RouteInstruction, we can see the other side of the one-to-many rela-
tionship being created. It states that a RouteInstruction can have only one Trail.

NOTE This relationship is being created by convention, but you can also con-
figure this relationship manually if you wish. That is out of scope for this
book, but I would recommend checking out the Microsoft Docs site (http://
mng.bz/XZYl), or picking up a copy of Entity Framework Core in Action by Jon
Smith (http://mng.bz/yv97) to learn more.

Now that we have the initial entities created, we need to configure them for use with
Entity Framework. This configuration will allow us to specify whether a property
should be nullable in the database, or whether it should have a character limit, things
like that. This can be achieved in a couple of ways.

 The first is to use data attributes. These are used directly on the entity, and each
property is decorated with attributes that tell Entity Framework how that column
should be configured in the database table. For example, to make the Name property
of the Trail class not nullable in the database, we use the following data attribute:

[Required]
public string Name { get; set; }

You can configure everything from field validations to the name of the column it maps
to or even the table name. If you’re interested in using this method for configuration,
I would suggest reading the official docs page on the topic (http://mng.bz/M5gE).

 The second way to configure an entity is to use a configuration class. I prefer this
method, as I’m not a fan of data attributes. I also use DDD (domain-driven design) in
a lot of my professional projects, and my domain entities shouldn’t be cluttered with
persistence concerns. With this method, all the configuration is done in a separate
class, and the entity is ignorant of any of it.

 In the case of small projects like Blazing Trails or in CRUD (create, read, update,
delete) systems where DDD isn’t being used, I lean toward keeping the configuration
class in the same file as the entity. This makes updating it easier, and if the system grew
more complex over time, I could easily refactor the configuration class out into its
own file and move the entity to a domain project with very few issues.

 We’ll start by configuring the Trail entity first. Inside the Trail.cs file, we will add
an additional class. This will go inside the namespace but outside the existing class.
The code is shown in the following listing.

public class TrailConfig : IEntityTypeConfiguration<Trail>
{
 public void Configure(EntityTypeBuilder<Trail> builder)
 {
 builder.Property(x => x.Name).IsRequired();

Listing A.5 Trail.cs: TrailConfig class

IEntityTypeConfiguration<T> allows us to specify
the configuration for the entity defined as T.

IEntityType-Configuration<T>
defines the Configure

method; in here, rules
can be specified

for each property
on the model.

http://mng.bz/XZYl
http://mng.bz/XZYl
http://mng.bz/yv97
http://mng.bz/M5gE

301A.3 Setting up an SQLite database in the API

T>

T>.

ies.
 builder.Property(x => x.Description).IsRequired();
 builder.Property(x => x.Location).IsRequired();
 builder.Property(x => x.TimeInMinutes).IsRequired();
 builder.Property(x => x.Length).IsRequired();
 }
}

To create a configuration file, we need to inherit from the IEntityTypeConfigura-
tion<T> interface—T being the entity we want to configure. This interface requires
us to implement a single method called Configure. In the Configure method, rules
can be specified for each property on the entity. In the case of the code in listing A.5,
all the properties, except IsFavourite, are being marked as required.

 Now let’s do the same for the RouteInstruction entity. Just as before, we’ll add
a new configuration class to the existing file. The code is shown in the following listing.

public class RouteInstructionConfig :

➥IEntityTypeConfiguration<RouteInstruction>
{
 public void Configure(EntityTypeBuilder<RouteInstruction> builder)
 {
 builder.Property(x => x.TrailId).IsRequired();
 builder.Property(x => x.Stage).IsRequired();
 builder.Property(x => x.Description).IsRequired();
 }
}

As with the Trail configuration, we’re implementing the IEntityTypeConfigura-
tion<T> interface. In the Configure method, we’re then specifying the rules we
need. Once again, we’re just setting a few of the properties as required.

A.3.2 Setting up the database context

With our entities set up and configured, we can turn our attention to the database con-
text, BlazingTrailsContext. The database context is a combination of the Reposi-
tory pattern and the Unit of Work pattern. In it, we essentially define collections of our
entities using properties with a type of DbSet<T>. We can then inject it into our appli-
cation and use it to access and modify data in the database. The following listing shows
the updated code for the BlazingTrailsContext class.

public class BlazingTrailsContext : DbContext
{
 public DbSet<Trail> Trails => Set<Trail>();
 public DbSet<RouteInstruction> RouteInstructions =>

Set<RouteInstruction>();

Listing A.6 RouteInstruction.cs: RouteInstructionConfig class

Listing A.7 BlazingTrailsContext.cs

IEntityTypeConfiguration<T>
allows us to specify the configuration
for the entity defined as T.

IEntityTypeConfiguration<
defines the Configure
method; in here, rules
can be specified for each
property on the model.

The DbContext class provides all the base functionality for the
context. All database contexts must inherit from this class.

Each entity is represented as a
collection with the type DbSet<
These are essentially repositor

302 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
 public BlazingTrailsContext(DbContextOptions<BlazingTrailsContext>
 ➥options) : base(options) { }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(
 ➥new TrailConfig());
 modelBuilder.ApplyConfiguration(
 ➥new RouteInstructionConfig());
 }
}

To start, our context must inherit from the DbContext class. This class provides all
the plumbing to interact with the database. Next, we need to define the collections of
our entities. These are essentially repositories and provide a way for us to interact with
the tables containing the entity data in the database.

 The other thing to note in this class is the application of the entity configuration
we created in the previous section. This is done by overriding the OnModelCreating
method. In this method, we apply each configuration using the ModelBuilder
object.

A.3.3 Connection strings and service configuration

The last step of configuration is to add a connection string to the appsettings.json file
and add the required services to the service container. In the appsettings.json file, add
the following just inside the final closing bracket:

"ConnectionStrings": {
 "BlazingTrailsContext": "DataSource=Persistence/Data/blazingtrails.db"
}

This will be used by Entity Framework to locate the database when attempting to save
or retrieve data. It will also be used when first creating the database to know where to
create it in the file system.

 With the connection string set up, we just need to register the Entity Framework
services with the services container in Program.cs. To do that, we need to call the
AddDbContext<T>() method on the builder.Services property, as shown in the
following code:

builder.Services.AddDbContext<BlazingTrailsContext>(options =>
options.UseSqlite(builder.Configuration.GetConnectionString("BlazingTrai
lsContext")));

builder.Services.AddControllers();

This method requires us to pass the type of context we’re registering and specify
which type of database we’re using, along with the connection string we will use to
connect to it. At this point, everything is configured and we’re ready to generate our
first migration and create the initial database.

By overriding the OnModelCreating method,
we can hook up the entity configuration
classes we created in the previous section.

303A.3 Setting up an SQLite database in the API
A.3.4 Creating the first migration and creating the database

With the configuration done, we can now create the initial migration for our applica-
tion. A migration contains two methods called Up and Down. The Up method contains
the desired state of the database based on new changes. The Down method contains
the instruction on how to reverse the Up method in case we need to revert the
migration.

 To create a migration, we can either use the Entity Framework Core tools, which
are command-line based (https://docs.microsoft.com/en-us/ef/core/cli/dotnet), or
we can use the Package Manager Console, if using Visual Studio on Windows. As I’m
on Visual Studio, I will use the Package Manager. If you don’t currently have this win-
dow open, you can open it by going to the main menu > View > Other Windows >
Package Manager Console.

 To create a migration, I will use the following command in the Package Manager
Console, making sure that the default project is set to BlazingTrails.Api:

Add-Migration InitialEntities -o Persistence/Data/Migrations

After specifying the command name, Add-Migration, we then give the migration a
name. I recommend using camel case to make this readable. Then we specify the out-
put location for the migrations to be a folder called Migrations in the Persistence >
Data location. Running the command will trigger a build of the application, and after
a few seconds, the migration should be shown. Figure A.9 shows the new files and fold-
ers created in the API project.

 Once the Add-Migration command has been run, a new Migrations folder is cre-
ated, containing the new migration and a model snapshot, which Entity Framework
autogenerates.

Running the Add-Migration
command has created
a new database migration.

Figure A.9 The new
Migrations folder contains
the initial migration.

https://docs.microsoft.com/en-us/ef/core/cli/dotnet

304 APPENDIX A Adding an ASP.NET Core backend to a Blazor WebAssembly app
Now that the migration is in place, we can create the initial database. To do this, we
run the Update-Database command in the Package Manager Console. This will
take the code in the migration we just created and generate a new database that con-
tains two tables, Trails and RouteInstructions. If all goes as expected, then you should
see the database appear in the Solution Explorer, as shown in figure A.10.

At this point, the backend of Blazing Trails is all ready to go! We’ve got a new API, and
we’ve got a new database configured where we can store the trail data going forward.

The new SQLite database created
by the Update-Database command

Figure A.10 The new SQLite
database as shown in Visual
Studio's Solution Explorer

appendix B
Updating existing

areas to use the API

In this appendix, I’ll take you through the steps needed to update the Home and
Search features of Blazing Trails to load trail data from the new API created in
chapter 5.

NOTE We’ll be working on the Blazing Trails application from its state
at the end of chapter 6. If you’re building along with the chapters in this
book, you’ll need to complete this appendix before moving on to
chapter 7.

As part of this, we’ll also add in a link to the home page to allow users to add new
trails to the application. Then we’ll update the TrailCard and TrailDetails
components to load images from the API. Plus, we’ll add a link on the TrailCard
to allow users to update an existing trail.

B.1 Creating a new API endpoint that returns all trails
Currently, the HomePage and SearchPage components load trail data from a local
file called trail-data.json, which is in the Web project’s wwwroot folder. While this
has been a quick and easy way to get some functionality built, we’ve now outgrown
it. With the work completed in chapter 5 to add a new API to the solution, we now
need those pages to get their trails from that API.

 We will start in the Shared project and create a feature folder called Home.
Inside that new folder, we’ll create another folder called Shared. Inside this folder,
we will add a new class called GetTrailsRequest.cs with the code in listing B.1.
305

306 APPENDIX B Updating existing areas to use the API
public record GetTrailsRequest : IRequest<GetTrailsRequest.Response>
{
 public const string RouteTemplate = "/api/trails";

 public record Trail(int Id, string Name, string? Image,
 ➥string Location, int TimeInMinutes, int Length, string Description);
 public record Response(IEnumerable<Trail> Trails);
}

The structure of requests should be looking quite familiar by now. We have the
RouteTemplate and then the response the request returns.

 Moving on to the API project, let’s create the new endpoint. We’ll start by creating
the folder structure. Add a Home folder containing a folder called Shared. Inside the
Shared folder, create a class called GetTrailsEndpoint.cs using the following
code.

public class GetTrailsEndpoint : BaseAsyncEndpoint
.WithRequest<int>
.WithResponse<GetTrailsRequest.Response>
{
 private readonly BlazingTrailsContext _context;

 public GetTrailsEndpoint(BlazingTrailsContext context)
 {
 _context = context;
 }

 [HttpGet(GetTrailsRequest.RouteTemplate)]
 public override async
 ➥Task<ActionResult<GetTrailsRequest.Response>>
 ➥HandleAsync(int trailId, CancellationToken cancellationToken
 ➥= default)
 {
 var trails = await _context.Trails
 ➥.Include(x => x.Route)
 ➥.ToListAsync(cancellationToken);

 var response = new GetTrailsRequest
 ➥.Response(trails.Select(trail => new GetTrailsRequest.Trail(
 trail.Id,
 trail.Name,
 trail.Image,
 trail.Location,
 trail.TimeInMinutes,
 trail.Length,
 trail.Description
)));

Listing B.1 GetTrailsRequest.cs

Listing B.2 GetTrailsEndpoint.cs

The response of the request is a
collection of Trail records.

All trails are retrieved
from the database.

The response is created
from the list of trails.

307B.2 Updating the Home feature to load trail data from the API
 return Ok(response);
 }
}

Essentially, the endpoint loads the trails from the database, then creates the response.
Notice that we’re not including the route instructions, as they are not needed when
displaying trail details on the home or search pages.

 That is all the work we need to do in the Shared and API projects. We can now turn
our attention to the Web project.

B.2 Updating the Home feature to load trail data from the API
Now that we have our new endpoint, we’re going to update various components in the
Home feature to load trail data from our new API endpoint. But before we do that, we
could do with tidying up the feature folder a little.

 Currently, there are a lot of files in the Home feature. This isn’t a problem if they
all belong there—but that isn’t the case here. There is a subfeature that we created in
chapter 4 that allows users to search for trails. By identifying subfeatures and moving
them to their own folders, we can keep larger features organized and easy to navigate.
Figure B.1 shows the current structure of the Home folder on the left and the reorga-
nized structure on the right.

As you can see, the new structure clearly defines the Search subfeature. It also allows
us to declare shared items. These are components, classes, or any other type of file for
that matter, that are shared across the main feature and its subfeatures.

 We’ll start by creating the new Search folder, then move SearchFilter.razor and
SearchPage.razor into it. Then we’ll add the Shared folder, moving the Trail-
Card.razor, TrailDetails.razor, and Trail.cs files into it.

 By adding those subfolders, we’ve introduced extra namespaces. This is because,
by default, Blazor components will use the folder structure they reside in to generate
their namespace. This will cause some build errors. So, we’re going to add a new

Before After

Figure B.1 The Home feature
folder is reorganized using
subfeatures to keep it tidy.

308 APPENDIX B Updating existing areas to use the API
component called _Imports.razor to the root of the Home folder with the follow-
ing two lines:

@using BlazingTrails.Shared.Features.Home.Shared
@using BlazingTrails.Client.Features.Home.Shared

This will make the two namespaces above accessible to all the components and classes
inside the Home folder. The first namespace is where the GetTrailsRequest class
lives in the BlazingTrails.Shared project. The second namespace is the new Shared
folder we just created in the BlazingTrails.Client project.

B.2.1 Adding the GetTrailsHandler class

Now that we’ve done some housekeeping, we can create the handler for the
GetTrailsRequest. The handler will be added to the new Shared folder we just
created. The code for the handler is shown in the following listing.

public class GetTrailsHandler :

➥IRequestHandler<GetTrailsRequest, GetTrailsRequest.Response?>
{
 private readonly HttpClient _httpClient;

 public GetTrailsHandler(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public async Task<GetTrailsRequest.Response?>
 ➥Handle(GetTrailsRequest request, CancellationToken cancellationToken)
 {
 try
 {
 return await _httpClient
 ➥.GetFromJsonAsync<GetTrailsRequest.Response>(
 ➥GetTrailsRequest.RouteTemplate);
 }
 catch (HttpRequestException)
 {
 return default!;
 }
 }
}

The handler makes a call to the API, and if a success response is returned, the payload
is automatically deserialized and returned to the caller. However, if a nonsuccess code
is returned, an HttpRequestException is thrown. This is caught in the catch
block, and a null response is returned to the caller.

Listing B.3 GetTrailsHandler.cs

The request is made to the API. If
successful, the response is deserialized

and returned to the caller.

If the API returns a nonsuccess
response code, a null response
is returned to the caller.

309B.2 Updating the Home feature to load trail data from the API
B.2.2 Updating HomePage.razor and SearchPage.razor to use
GetTrailRequest via MediatR

With the GetTrailsHandler in place, we can update the Home and Search pages to
get trails from the API. To do this, we’ll update them to dispatch a GetTrails-
Request via MediatR. We’ll start by updating HomePage.razor, as shown in the fol-
lowing listing.

@inject IMediator Mediator

// Code omitted for brevity

@code {
 // Code omitted for brevity

 protected override async Task OnInitializedAsync()
 {
 try
 {
 var response = await Mediator
 ➥.Send(new GetTrailsRequest());
 _trails = response.Trails.Select(x => new Trail
 {
 Id = x.Id,
 Name = x.Name,
 Image = x.Image,
 Description = x.Description,
 Location = x.Location,
 Length = x.Length,
 TimeInMinutes = x.TimeInMinutes
 });
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }

 // Code omitted for brevity
}

We start by removing the injection of the HttpClient; we no longer need this, as
we’ll be dispatching our request using MediatR. We then inject an instance of IMedia-
tor into the component.

Down in the code block, we replace the existing OnInitializedAsync method. In
this version, we dispatch the GetTrailsRequest via MediatR. We then use projection
to transform the data in the response into the format we require in the component.

Listing B.4 HomePage.razor: Update to use MediatR

Adds the injection
of IMediator

Dispatches the
GetTrailsRequest
using Mediator

310 APPENDIX B Updating existing areas to use the API
 As we are now loading trails from the API, we should cover the scenario where
there could be no trails to display. Currently, the home page would just be blank if
there were no trails. Figure B.2 shows what the home page will look like once we’ve
made our changes.

Figure B.2 The call-to-action section, which is displayed
when the application has no existing trails

To achieve this, we’re going to make an update to the markup section of the Home-
Page component. The update is shown in the following listing.

// Code omitted for brevity
@if (_trails.Any())
{
 <div class="mb-4">
 <p class="font-italic text-center">Do you have
 ➥an awesome trail you'd like to share?
 ➥Add it here.</p>
 </div>

Listing B.5 HomePage.razor: Displaying call to action when there are no trails

A simple graphic and
call to action help make
the home page more
inviting when there are
no trails in the system.

Checks to see if
there are any trails

This new link to add a trail is
shown at the top of the grid
displaying existing trails.

311B.2 Updating the Home feature to load trail data from the API
 <div class="grid">
 @foreach (var trail in _trails)
 {
 <TrailCard Trail="trail" OnSelected="HandleTrailSelected" />
 }
 </div>
}
else
{
 <div class="no-trails">
 <svg viewBox="0 0 16 16" class="bi bi-tree" fill="currentColor"
 ➥xmlns="http://www.w3.org/2000/svg">
 <path fill-rule="evenodd" d="M8 0a.5.5 0 0 1 .416.223l3

➥4.5A.5.5 0 0 1 11 5.5h-.098l2.022 3.235a.5.5 0 0 1-.424.765h-.191l1.638

➥3.276a.5.5 0 0 1-.447.724h-11a.5.5 0 0 1-.447-.724L3.69 9.5H3.5a.5.5 0

➥0 1-.424-.765L5.098 5.5H5a.5.5 0 0 1-.416-.777l3-4.5A.5.5 0 0 1 8

➥0zM5.934 4.5H6a.5.5 0 0 1 .424.765L4.402 8.5H4.5a.5.5 0 0 1 .447.724L3.31

➥12.5h9.382l-1.638-3.276A.5.5 0 0 1 11.5 8.5h.098L9.576 5.265A.5.5 0 0

➥1 10 4.5h.066L8 1.401 5.934 4.5z" />
 <path d="M7 13.5h2V16H7v-2.5z" />
 </svg>
 <h3 class="text-muted font-weight-light">
 ➥We currently don't have any trails,
 ➥why not add one?</h3>
 </div>
}
// Code omitted for brevity

We start by adding a check to see if there are any trails to display. If there are, we reuse
the original code for displaying the trails—with an additional link to allow users to
add new trails.

 If no trails are present, then we display an SVG, which is the tree outline we saw in
figure B.2. Feel free to replace this with whatever image you prefer. Underneath the
SVG is a call to action prompting the user to add a new trail.

 To finish things off, we will add a couple of styles to the home page. To do this, we
need to add a new SCSS file to the Home feature folder called HomePage.razor.scss.
Then we can add the following code.

.no-trails {
 text-align: center;
 margin-top: 100px;

 svg {
 width: 200px;
 color: #dee2e6;
 margin-bottom: 30px;
 }
}

Listing B.6 HomePage.razor.scss

This is the call to
action to add a trail.

This is applied to the container
of the call-to-action markup.

Shows the styling
for the SVG image

312 APPENDIX B Updating existing areas to use the API
The two classes apply some basic styling to the new call-to-action markup. The
no-trails class center aligns the content and adds a top margin. The svg class sets
the width of the SVG, as well as its color and bottom margin.

 Now that the HomePage is updated, let’s update the SearchPage. The updates are
shown in the following listing.

@inject HttpClient Http
@inject IMediator Mediator
// Code omitted for brevity
@code {
 // Code omitted for brevity
 protected override async Task OnInitializedAsync()
 {
 try
 {
 var response = await Mediator
 ➥.Send(new GetTrailsRequest());
 var allTrails = response.Trails.Select(x => new Trail
 {
 Id = x.Id,
 Name = x.Name,
 Image = x.Image,
 Description = x.Description,
 Location = x.Location,
 Length = x.Length,
 TimeInMinutes = x.TimeInMinutes
 });

 _searchResults = allTrails.Where(x => x.Name

➥.Contains(SearchTerm, StringComparison.CurrentCultureIgnoreCase)
 || x.Location

➥.Contains(SearchTerm, StringComparison.CurrentCultureIgnoreCase));
 _cachedSearchResults = _searchResults;

 UpdateFilters();
 }
 catch (HttpRequestException ex)
 {
 Console.WriteLine($"There was a problem loading trail data:
 ➥{ex.Message}");
 }
 }
 // Code omitted for brevity
}

We’re performing the exact same changes here as we just did in the HomePage compo-
nent. First, we remove the HttpClient and instead inject an instance of IMediator.
Then we update the code block to dispatch the GetTrailsRequest using MediatR.
Finally, we use projection to transform the trails returned from the API into the form
we need for the component.

Listing B.7 SearchPage.razor: Update to use MediatR

Removes the HttpClient
injection from the fileAdds the injection

of IMediator

Dispatches the
GetTrailsRequest
using Mediator

313B.2 Updating the Home feature to load trail data from the API
B.2.3 Updating TrailCard.razor and TrailDetails.razor

The final update we need to make is to the TrailCard and TrailDetails compo-
nents. They both display the trail image, but they need to be updated to load the
image from the images folder exposed by the API project.

 As trail images are optional, we’ll also add in a check. If the trail doesn’t have an
image, we’re going to display a placeholder image using a free service from place-
holder.com. This service allows us to dynamically generate an image at the correct size
by using a specially formatted URL. For example, the following URL generates a 400
by 200 pixel image in jpg format:

https://via.placeholder.com/400x200.jpg

Services like this can be very useful when prototyping, in early stage development, or
for scenarios like ours where we need a default image when one isn’t provided. When
we’re done, any trail without an image will display the image shown in figure B.3.

As you can also see from figure B.3, we’ll add in a new button that will link to the Edit
Trail page we created in chapter 6. This will allow users to update an existing trail.

 Let’s get started. We’ll tackle the TrailCard first. It currently displays the trail
image using this code:

We’re going to update this line to the following:

<img src="@(!string.IsNullOrWhiteSpace(Trail.Image) ? $"images/{Trail.Image}"
: "https://via.placeholder.com/286x190.jpg?text=No+Image+For+Trail")"
class="card-img-top">

Link to update the
trail’s details

Placeholder image
generated using
placeholder.com

Figure B.3 Updates to the
TrailCard component

https://placeholder.com/
https://placeholder.com/

314 APPENDIX B Updating existing areas to use the API
This new code starts by checking if the trail has an image associated with it. If it does,
then we output the string images/{filename}. However, if the trail doesn’t have an
image, we output a string that is the URL to load our placeholder image. We’ll also
use an additional feature of placeholder.com that allows us to specify a message to be
displayed in the image. In this case we’re adding the text No Image for Trail.

 Now we can add the new update button. We’re going to need the Navigation-
Manager so we can use its NavigateTo method when the button is clicked to pro-
grammatically navigate to the Edit Trail page. So, let’s inject that at the top of the
component:

@inject NavigationManager NavManager

Then we can add the following line of code directly underneath the existing View
button.

<button class="btn btn-outline-secondary float-right" title="Edit"
@onclick="@(() => NavManager.NavigateTo($"/edit-trail/
{Trail.Id}"))">Update</button>

When the button is clicked, the user will navigate to the Edit Trail page. We’re passing
the ID of the trail we wish to edit using a route parameter.

 That’s it for the TrailCard component. We can now update the TrailDetails
component. The only thing we need to change here is how the image is loaded. Just
like the TrailCard, the TrailDetails is currently loading the trail image using the
following code:

And we can update it to use the same code as we used in the TrailCard:

<img src="@(!string.IsNullOrWhiteSpace(_activeTrail.Image) ? $"images/
{_activeTrail.Image}" : "https://via.placeholder.com/
286x190.jpg?text=No+Image+For+Trail")" class="card-img-top">

With that, our updates are complete. All that is left to do is remove the old test data
from the Trails folder inside wwwroot. The whole Trails directory can be deleted along
with everything inside it.

http://www.placeholder.com

index
Symbols

@attributes directive 238
@bind directive 89, 116–117
@code block 41–43
@implements directive 60
@inherits directive 37
@layout directive 37
@onclick event 69
@page attribute 238
@page directive 32, 39, 88
@ref directive 162
@typeparam directive 186
#blazor-error-ui .dismiss class 33
#blazor-error-ui class 33

A

AAA (arrange, act, assert)
pattern 279

AbstractValidator<T> class 124
accept attribute 152, 158
AccountClaimsPrincipalFactory

class 248
Actiontype 69
Add Trail feature 233
Add-Migration command 303
AddAccountClaimsPrincipal-

Factory extension
method 249

AddAuthentication method 230
AddBlazoredLocalStorage

extension method 279
AddDbContext() method 302
AddFavorite method 263, 265

AddHttpClient extension
method 242

AdditionalAssemblies
parameter 86

AddJwtBearer method 230
AddOidcAuthentication

method 227, 231, 249
AddTrail subfeature 159
AddTrailEndpoint 150, 239
AddTrailEndpoint.cs class 137
AddTrailHandler.cs class 134
AddTrailPage.razor 112, 135,

161–165
AddTrailRequest type 135
addTrails variable

declaration 236
Administrator role 245
AdminLayout 37
AOT (ahead-of-time) mode 9
API endpoints

adding 156–158
calling secure endpoints from

Blazor 241–245
for GetTrailRequest and

EditTrailRequest 174–177
returning all trails 305–307
securing 239–241
setting up 136–139

APIs (application programming
interfaces)

ASP.NET Core Web API
291–296
configuring 293–296
removing boilerplate from

new API project 293
posting form data to 132–136

SQLite database in 298–304
configuring initial entities

for system 299–301
connection strings and ser-

vice configuration 302
creating first migration and

creating database
303–304

setting up database
context 301–302

updating existing areas to
use 305–314
creating new API endpoint

that returns all
trails 305–307

updating Home feature to
load trail data from
API 307–314

App component 28–30, 85, 270
app.MapControllers()

method 230
App.razor 29–30
app.UseRouting() method 230
AppAssembly parameter 86
AppState

improving design 258–260
initializing 270–271
saving data entered on form

to 255–258
aria attribute 127
arrange, act, assert (AAA)

pattern 279
ASP.NET Core 291–304

adding .NET class library to
share code between client
and API 296–298
315

INDEX316
ASP.NET Core (continued)
adding ASP.NET Core Web

API 291–296
setting up SQLite database in

API 298–304
ASP.NET Core Web API 291–296

configuring API 293–296
configuring to use Auth0

identity provider 229–230
removing boilerplate from

new API project 293
ASPNETCORE_ENVIRON-

MENT variable 226
async lifecycle method 58–60
Auth0 identity provider 223–230

adding roles in 245–247
configuring ASP.NET Core

WebAPI to use 229–230
configuring Blazor Web-

Assembly to use 225–229
consuming roles in Blazor

WebAssembly 247–249
customizing tokens

from 224–225
registering applications

with 224
authentication

displaying different UI frag-
ments based on status
230–238

faking 283–285
Authentication.razor 228
authorization 245–252

adding roles in Auth0
245–247

consuming Auth0 roles in
Blazor WebAssembly
247–249

faking 283–285
implementing role-based

logic 249–252
preventing unauthorized

users access to pages
238–245
calling secure API end-

points from Blazor
241–245

securing API
endpoints 239–241

Authorize attribute 228, 238,
251–252

authorized keyword 231
Authorized template 231
authorizedUser variable 284

AuthorizeRouteView
component 228, 238–239

AuthorizeView component 231,
235–236, 251

Authorizing template 228
AutoFixture package 276

B

base.CreateUserAsync()
method 249

BaseAddressAuthorization-
MessageHandler
handler 242

BaseAsyncEndpoint class
137–138

BeginSignOut method 231
bind directive 90, 118, 147, 152
Blazing Trails application 18–48

building and running 24–25
components of 25–30

App.razor 29–30
Index.html 25–26
Program.cs 27–29
wwwroot folder and

_Imports.razor 30
securing 221–252

authorizing users by
role 245–252

displaying different UI frag-
ments based on authen-
tication status 230–238

integrating with identity
provider 223–230

prevent unauthorized users
accessing page 238–245

setting up 19–24
Blazor WebAssembly tem-

plate configurations
20–21

creating application 21–24
testing with bUnit 272–290

adding bUnit test
project 274–277

overview 273–274
testing components with

bUnit 277–289
writing components 30–48

Blazing Trails home
page 38–48

defining layout 36–38
organizing files using fea-

ture folders 31–34
setting up styling 34–36

BlazingTrails.Shared class
library 297

BlazingTrailsContext class 212,
298, 301

Blazor 1–17
adding MediatR to 132
as platform for building UIs

with C# 5–17
Blazor Server 11–16
Blazor WebAssembly 7–11
hosting models 6, 16–17

calling secure API endpoints
from 241–245

choosing, reasons for 2–3
components 3–5

anatomy of 4–5
benefits of component-

based UI 4
defined 3–4

Fluent Validation, configur-
ing for 125–130

router 85–87
Blazor Hybrid 16
Blazor Server 11–16

benefits and tradeoffs 15–16
calculating UI updates 13–14
performance 14–15

Blazor WebAssembly 7–11,
291–304

adding .NET class library to
share code between client
and API 296–298

adding ASP.NET Core Web
API 291–296
configuring API 293–296
removing boilerplate from

new API project 293
benefits and tradeoffs 10–11
calculating UI updates 9–10
configuring to use Auth0

identity provider 225–229
consuming Auth0 roles

in 247–249
setting up SQLite database in

API 298–304
configuring initial entities

for system 299–301
connection strings and ser-

vice configuration 302
creating first migration and

creating database
303–304

setting up database
context 301–302

template configurations
20–21

blazor.webassembly.js script 227

INDEX 317
Blazored.LocalStorage.Test-
Extensions package 276

Body parameter 36–37
boilerplate code, removing 293
browser local storage, persistent

state with 260–271
adding and removing trails

from favorites list 264–265
defining additional state

store 261–263
displaying current number of

favorite trails 265–266
initializing AppState 270–271
reorganizing and

refactoring 266–268
showing favorited trails on

favorite trails page 268–270
Build method 29
builder.RootComponents.Add

method 28
builder.Services property 302
bUnit testing 272–290

adding test project 274–277
overview 273–274
testing components with

277–289
emulating JavaScript

interactions 285–287
faking authentication and

authorization 283–285
testing multiple

components 287–289
testing rendered

markup 278–281
triggering event

handlers 281–283

C

C# 5–17
Blazor Server 11–16

benefits and tradeoffs
15–16

calculating UI updates
13–14

performance 14–15
Blazor WebAssembly 7–11

benefits and tradeoffs
10–11

calculating UI updates 9–10
calling JavaScript functions

and returning
response 200–203

calling methods from
JavaScript 203–205

hosting models 16–17
Blazor Hybrid 16
Mobile Blazor Bindings

16–17
overview 6

card component markup 173
.card-brand class 115
CascadingAuthenticationState

component 228
child components 62–71

passing data to parent 68–71
passing values from parent

to 64–68
TrailDetails

component 64–66
updating HomePage

component 67–68
ChildContent parameter 115,

267
claims-based authorization 225
ClaimsIdentity type 224
ClaimsPrincipal type 224
ClearSearchFilter method 103
ClearTrail method 255, 258
Click method 282
client-side routing 85–89

Blazor's router 85–87
page components 88–89

code security 11, 15
code sharing 3, 11
col class 118
CompileScopedCSS 81
component parameters 62
ComponentBase class 56, 60
components 3–5, 25–30, 49–83

anatomy of Blazor 4–5
App.razor 29–30
benefits of component-based

UI 4
Blazing Trails application,

writing 30–48
Blazing Trails home

page 38–48
defining layout 36–38
organizing files using fea-

ture folders 31–34
setting up styling 34–36

creating JavaScript module
and accessing via 195–203
calling JavaScript functions

from C# and returning
response 200–203

testing out RouteMap
component 199–200

defined 3–4

forms 110–122
basic EditForm

configuration 112–115
collecting data with input

components 115–120
creating inputs on

demand 120–122
creating model 111–112

handling multiple routes with
single 96–101

Index.html 25–26
life cycle methods 54–62

Dispose method 60–62
first render 57–58
with async 58–60

page components 88–89
Program.cs 27–29
reusing 180–193

Razor class libraries 189–192
templates 181–189

structuring 51–54
partial class 52–54
single file 51–52

styling 71–82
global styling 72–73
scoped styling 73–76
using CSS

preprocessors 76–82
testing with bUnit 277–289

emulating JavaScript
interactions 285–287

faking authentication and
authorization 283–285

testing multiple
components 287–289

testing rendered
markup 278–281

triggering event
handlers 281–283

working with parent and child
components 62–71
passing data from child to

parent 68–71
passing values from parent

to child 64–68
wwwroot folder and

_Imports.razor 30
Configure method 29, 301
ConfigureServices method 29
connection strings 302
Context attribute 188
context parameter 187–189
context variable 235
Counter.razor project

template 4

INDEX318
Create method 204
CSRF (cross-site request forgery)

attacks 231
CSS classes 141–144

creating
FieldCssClassProvider
141–143

using custom FieldCssClass-
Providers with
EditForm 143–144

CSS preprocessors 76–82
CSS variables 36
CssClass property 149
CurrentValue property 146, 148
CurrentValueAsString

property 146
Customize Tokens rule 247

D

data
collecting with input

components 115–120
passing between pages using

route parameters 92–96
passing from child to parent

components 68–71
saving data entered on form

to AppState 255–258
submitting to server 130–139

adding MediatR to Blazor
project 132

creating request and han-
dler to post form data to
API 132–136

setting up endpoint
136–139

Data folder 298
data transfer objects (DTOs) 3
DataAnnotationsValidator

component 111, 123
DB Browser for SQLite tool 178
DbContext class 302
DDD (domain-driven

design) 300
delete function 201
deleteLastWaypoint

function 200, 202, 208, 287
DeleteLastWaypoint

method 202, 207
Dependencies node 297
DI (dependency injection) 28
display: flex layout feature 149
Dispose method 60–62
div element 266

domain-driven design
(DDD) 300

dotnet build command 24
dotnet restore command 24
dotnet run command 24
dotnet watch command 24
DotNetObjectReference

class 204
DotNetObjectReference<T>

class 204
Down method 303
.drawer class 66, 75–76
.drawer-wrapper.slide > .drawer

class 66
DTOs (data transfer objects) 3

E

E2E testing (end-to-end
testing) 273

edit trail feature 165–177
adding API endpoints for

GetTrailRequest and
EditTrailRequest 174–177

adding EditTrailPage to client
project 167–171

adding GetTrailRequest and
EditTrailRequest
handlers 173–174

adding new EditTrailRequest
and GetTrailRequest to
shared project 166–167

updating shared project’s
folder structure 166

updating TrailDto class
165–166

updating TrailForm to handle
editing 171–173

EditContext instance 143
EditForm component 108,

111–115, 125–126, 136,
143–144, 160–162, 256

EditForm tag 116, 126
EditForm’s OnValidSubmit

event 161
editing forms 159–178

adding edit trail feature
165–177
adding API endpoints for

GetTrailRequest and
EditTrailRequest
174–177

adding EditTrailPage to cli-
ent project 167–171

adding GetTrailRequest and

EditTrailRequest
handlers 173–174

adding new EditTrailRe-
quest and GetTrailRe-
quest to shared
project 166–167

updating shared project's
folder structure 166

updating TrailDto
class 165–166

updating TrailForm to han-
dle editing 171–173

refactoring AddTrailPage
.razor 161–165

separating trail form into
standalone
component 159–161

testing edit functionality
177–178

EditorRequired attribute 46, 65
EditTrail subfeature 159
EditTrailEndpoint

endpoint 239–240, 249
EditTrailPage 167–171
EditTrailPage > SubmitEditTrail

method 172
EditTrailPage.razor 167
EditTrailRequest

adding handlers 173–174
adding to shared project

166–167
API endpoints for 174–177

EF (Entity Framework) 213
end-to-end testing (E2E

testing) 273
Entities folder 298
Entity Framework Core in Action

(Smith) 300
ErrorAlert component 163, 180
existingWaypoints

parameter 208
export keyword 197

F

faking authentication and
authorization 283–285

Fast load time 15
favorite trails page

adding and removing trails
from 264–265

displaying current number of
favorite trails 265–266

showing favorited trails
on 268–270

INDEX 319
FavoriteButton component 264,
267, 278, 281

FavoriteButtonTests.razor
component 278

FavoriteTrailsPage.razor
component 268

FavoriteTrailsState class 261
feature folders 31–34
Features project 33
FieldCssClassProvider

creating 141–143
using with EditForm 143–144

File property 154
FileCount property 152
files 151–158

configuring InputFile
component 151–153

uploading when form is
submitted 153–158
adding API endpoint

156–158
building request and

handler 154–156
testing everything out 158

FilterSearchResults method 102
Find method 282
FindAll method 282
FindComponent method 289
FindComponents method 289
firstRender parameter 271
fitBounds function 208
Fixture class 279
fixture.Createmethod 280
flows 223
Fluent Validation

configuring Blazor to
use 125–130

configuring validation rules
with 123–125

FluentValidationsValidator
component 126

For parameter 127
form submit event 110
FormFieldSet component 118,

180–181
FormFieldSet.razor

component 118
forms 108–179

building custom input compo-
nents with InputBase
145–151
inheriting from

InputBase 145–148
styling custom

component 148–149

using custom input
component 149–151

customizing validation CSS
classes 141–144
creating

FieldCssClassProvider 1
41–143

using custom FieldCssClass-
Providers with
EditForm 143–144

submitting data to
server 130–139
adding MediatR to Blazor

project 132
creating request and han-

dler to post form data to
API 132–136

setting up endpoint
136–139

super-charging with
components 110–122
basic EditForm

configuration 112–115
collecting data with input

components 115–120
creating inputs on

demand 120–122
creating model 111–112

updating to allow
editing 159–178
adding edit trail

feature 165–177
refactoring

AddTrailPage.razor
161–165

separating trail form into
standalone
component 159–161

testing edit
functionality 177–178

validating model 123–130
configuring Blazor to use

Fluent Validation
125–130

configuring validation rules
with Fluent
Validation 123–125

working with files 151–158
configuring InputFile

component 151–153
uploading when form is

submitted 153–158
FormSection component 115,

117, 180–181
FormStateTracker class 256, 259

FormStateTracker
component 257

G

generics 185–189
GetFieldCssClass method 142
GetFromJsonAsync method 42,

44
GetMultipleFiles method 152
GetTrail method 255
GetTrailEndpoint

endpoint 239, 249
GetTrailRequest

adding handlers 173–174
adding to shared project

166–167
API endpoints for 174–177
updating HomePage.razor

and SearchPage.razor to
use 309–312

GetTrailRequest.Response 176
GetTrailsEndpoint.cs class 306
GetTrailsHandler class 308
GetTrailsRequest class 305, 308
GetUriWithQueryParameters

method 102–103
GetValidationMessages

method 142
global styling

overview 72–73
scoped styling and 75–76

H

Handle method 134, 243
HandleAsync method 138, 150,

213–214
Handler method 69
handlers

adding GetTrailRequest and
EditTrailRequest 173–174

creating to post form data to
API 132–136

triggering event 281–283
uploading files 154–156

HandleTrailSelected method 71
head element 28, 36
Header component 38–39, 232
headless browser 273
HeadOutlet component 28
HelpText parameter 115
Home feature 262

loading trail data from
API 307–314

INDEX320
Home feature (continued)
adding GetTrailsHandler

class 308
HomePage.razor and

SearchPage.razor to use
GetTrailRequest via
MediatR 309–312

TrailCard.razor and Trail-
Details.razor 313–314

updating 233–238
Home folder 33, 305
HomePage component 52, 63,

68, 70, 90, 234–235, 250,
264–265, 268, 287, 289, 305,
310, 312

updating 67–68
writing components for 38–48

HomePage.razor 33, 218,
309–312

HomePage.razor.scss SCSS
file 311

hosted mode 20
hostElement parameter 197
hosting models 16–17

Blazor Hybrid 16
Mobile Blazor Bindings 16–17
overview 6

HttpClient instance 242
HttpRequestException type 42

I

IAsyncDisposable interface 61,
199

IBrowserFile type 155
id attribute 26
Id property 257
identity provider 223–230

configuring ASP.NET Core
WebAPI to use Auth0
229–230

configuring Blazor WebAs-
sembly to use Auth0
225–229

customizing tokens from
Auth0 224–225

registering applications with
Auth0 224

IDisposable interface 60–61,
205

IdP (identity provider) 222
IEntityTypeConfiguration

interface 301
IEnumerable private field

type 42

if statement 44, 168, 217
IJSRuntime 198, 285
Image property 166, 171, 173,

177
ImageAction property 166, 170,

172
Images folder 34
ImageSharp package 156
_Imports.razor 30, 308
_Imports.razor component 112
in-memory store 254–258

creating and registering state
store 254–255

saving data entered on form
to AppState 255–258

Index.html 25–26
inheriting from InputBase

145–148
inherits directive 146
initialize function 197–198, 205,

207, 216, 286
Initialize method 263, 270
Inject attribute 41, 135, 256
input components

collecting data with 115–120
customizing with

InputBase 145–151
inheriting from

InputBase 145–148
styling custom

component 148–149
using custom input

component 149–151
InputFile component 151–153,

158, 172–173
InputNumber component 120
InputRouteMap.razor

component 209
inputs, on demand 120–122
InputText component 116,

120–121
InputTextArea component 116,

120
InputTime component 145, 151
:int route constraint 97
int type parameter 146
integration testing 273
invalid class 127–128
InvokeAsync method 198
InvokeAsync<T> method 200,

202
InvokeMethodAsync

function 205
InvokeVoidAsync method 198,

200, 286

is-invalid CSS class 142
is-valid CSS class 142
IsFavorite method 263–264, 282
IsInRole helper method 250
IsModified method 142
IsReadOnly parameter 216
isValid variable 142
Items parameter 186–187

J

JavaScript 194–220
calling C# methods

from 203–205
creating module and access-

ing via component 195–203
calling JavaScript functions

from C# and returning
response 200–203

testing out RouteMap
component 199–200

displaying RouteMap on Trail-
Details drawer 214–219

integrating RouteMap compo-
nent with TrailForm
206–214

testing with bUnit 285–287
JSInterop mode 289
JWTs (JSON Web Tokens) 230

K

keydown event 69

L

latency 15
Latitude property 212
LatLong object 207
LatLong type 207
launchUrl property 293
layout 36–38
Layout folder 33
LayoutComponentBase class 37
Length property 129
life cycle methods 54–62

Dispose method 60–62
first render 57–58
with async 58–60

Lifecycle component 58
Lifecycle.razor component 58
Load time 11
LoadTrailImage method 152,

161, 173
LocationChanged event 87

INDEX 321
LoginStatus component 232
LogOut template 229
Longitude property 212
loose mode 285

M

Main method 28–29
MainLayout component 33,

37–38
ManageTrails feature 145, 155,

159, 209, 242
Map component 196
MapFallbackToFile

endpoint 294
MarkupMatches method

280–281
MAUI (.NET Multi-platform

App UI framework) 6
max attribute 146
MaxLength route parameter 96
MaxTime parameter 103
MaxTime property 103
Mediator service 135
MediatR 132, 309–312
migration, creating first

303–304
Migrations folder 303
min attribute 146
mixins 76
Mobile Blazor Bindings 16–17
Model parameter 143
ModelBuilder object 302
modified class 128
MultipartFormDataContent

object 155
multiple attribute 152
MVVM (model-view-

viewmodel) 3

N

Name parameter 278
Name property 124–125, 224,

231, 300
NavigateTo method 314
NavigationManager JavaScript

service 86
NavigationManager.NavigateTo

method 89, 98, 103
nesting 76
.NET class library 296–298
.NET Ecosystem 2
.NET Multi-platform App UI

framework (MAUI) 6
NewTrailState class 258

no-trails class 312
NotAuthorized template 228,

231, 238–239
NotEmpty() method 125
NotFound template 87, 92
NotifyStateHasChanged private

method 262
NoTrails component 267–269
npm –-version command 81
NPM (Node package

manager) 77
npm install command 82
NpmLastInstall property 81
NRTs (nullable references

types) 43
null forgiving operator (!) 47

O

-o switch 23
OIDC (OpenID Connect) 222
Ok() helper method 138
OnAfterRender method 42,

57–58
OnAfterRenderAsync

method 198, 271
OnChange event 90, 147, 152,

262, 266, 269
onclick event 197, 202
OnFieldChanged event 143,

257
OnFieldChanged handler 259
OnInitialized method 57, 161,

171
OnInitializedAsync method 42,

57–59, 100, 143, 234, 236,
271, 309

oninput event 90
OnInvalidSubmit event 111, 113
OnModelCreating method 302
OnParametersSet method 42,

57, 59, 65, 100, 104, 148,
171, 210–211, 258–259

OnParametersSetAsync
method 57

OnSelected event 63, 71
OnSubmit component

event 161
OnSubmit event 111, 113, 161,

168
OnValidationStateChanged

event 143
OnValidSubmit event 111, 113
OnWaypointAdded event 207,

210

OnWaypointAdded
parameter 207

OnWaypointDeleted event 207,
210

OnWaypointDeleted
parameter 207

OpenID Connect (OIDC) 222
OpenReadStream method 155
Owner property 233–234, 284

P

page components 86, 88–89
page directive 5, 86
pages

navigating between
programmatically 89–92

passing data between pages
using route parameters
92–96

preventing unauthorized
users access to 238–245
calling secure API end-

points from Blazor
241–245

securing API
endpoints 239–241

PageTitle component 45
Parameter attribute 46, 65, 103
parameters 4, 46
parent components 62–71

passing data from child to
68–71

passing values to child 64–68
TrailDetails

component 64–66
updating HomePage

component 67–68
partial class format 52–54
partial keyword 52
Persistence project 298
persistent state with browser

local storage 260–271
adding and removing trails

from favorites list 264–265
defining additional state

store 261–263
displaying current number of

favorite trails 265–266
initializing AppState 270–271
reorganizing and

refactoring 266–268
showing favorited trails on

favorite trails page 268–270

INDEX322
PKCE (Proof of Key for Code
Exchange) 223

POCOs (Plain Old CLR
Object) 299

positional construction 154
PostAsJsonAsync extension

method 42
ProcessImage method 153, 170
Program class 27–29
Program.Main method 28–29,

132, 231, 242, 249, 261
programmatic navigation 89–92
PropertyGroup section 81
PutAsJsonAsync extension

method 42

Q

query strings 101–107
retrieving values using

SupplyParameterFrom-
Query 103–107

setting values 101–103

R

RCLs (Razor class
libraries) 189–192

refactoring
AddTrailPage.razor 161–165
persistent state with browser

local storage 266–268
registering

applications 224
state store 254–255

RegisterValidatorsFrom-
Assembly configuration
option 124

RemoteAuthenticatorView
component 229

RemoteUserAccount type 249
RemoveFavorite method 263,

265
Render method 280
RenderComponent method 278
rendering

first 57–58
testing rendered

markup 278–281
Request object 157
requests

creating to post form data to
API 132–136

uploading files 154–156
required text property 123

ResetForm method 161,
 258–259

reusing components 180–193
Razor class libraries 189–192
templates

defined 181–185
enhancing with

generics 185–189
Rider third-party IDE 2
roles 222, 245
routable components 5, 86
Route collection 125, 130
route constraint 96
Route list 121–122
Route property 122, 210–212,

214
RouteInstruction class 39, 112,

210, 212
RouteInstruction entity 299,

301
RouteInstruction nested

class 125
RouteInstruction type 214
RouteInstructions property 213
RouteInstructions table 213
RouteInstructionValidator

class 211
RouteMap component 195–199,

201, 203–205, 285–286, 289
displaying on TrailDetails

drawer 214–219
integrating with

TrailForm 206–214
testing out 199–200

routeMap JavaScript
module 202, 286

routeMap module 198, 286
RouteMap.razor

component 197
Router component 29–30, 37,

85–86
RouteView component 228, 238
routing 84–107

client-side routing 85–89
Blazor's router 85–87
page components 88–89

handling multiple routes with
single component 96–101

navigating between pages
programmatically 89–92

passing data between pages
using route parameters
92–96

working with query
strings 101–107

retrieving values using
SupplyParameterFrom-
Query 103–107

setting values 101–103
RuleFor method 124
RunNpmInstall 81

S

Sass (syntactically awesome style
sheets) 73

SaveTrail method 255
Scoped lifetime 28
scoped service 255
scoped styling 73–76
SearchFilter component 97–99,

101, 103, 106
SearchForTrail method 89–90
SearchPage component 88, 93,

96, 98, 100, 236, 305,
309–312

SearchPage’s MaxLength
parameter 103

SearchPage’s route template 92
SearchTerm route parameter 93
securing Blazor

applications 221–252
authorizing users by role

245–252
adding roles in Auth0

245–247
consuming Auth0 roles in

Blazor
WebAssembly 247–249

implementing role-based
logic 249–252

displaying different UI frag-
ments based on authentica-
tion status 230–238

integrating with identity
provider 223–230
configuring ASP.NET Core

WebAPI to use
Auth0 229–230

configuring Blazor Web-
Assembly to use
Auth0 225–229

customizing tokens from
Auth0 224–225

registering applications
with Auth0 224

prevent unauthorized users
accessing page 238–245
calling secure API end-

points from Blazor
241–245

INDEX 323
securing API
endpoints 239–241

semantic markup
verification 280

servers 130–139
adding MediatR to Blazor

project 132
creating request and handler

to post form data to
API 132–136

setting up endpoint 136–139
service configuration, SQLite

database 302
service container 279, 281
SetClaims method 285
SetCurrentValue method 148
SetFieldCssClassProvider

method 143
SetHourValue method 148
SetMinuteValue method 148
SetParametersAsync method 65
SetPolicies method 285
SetResult method 287
setter method 147
SetupModule method 286
Setup<T> method 287
SetupVoid method 286
SetVoidResult method 286
Shared folder 305–306
shared project

adding EditTrailRequest and
GetTrailRequest to
166–167

updating folder structure 166
single file format 51–52
Singleton lifetime 28
.slide class 67
sln add command 297
Smith, Jon 300
SQLite database 298–304

configuring initial entities for
system 299–301

connection strings and service
configuration 302

creating first migration and
creating database 303–304

setting up database
context 301–302

standalone mode 20
Startup class 29
state 50
state management 253–271

creating persistent state with
browser local storage
260–271

adding and removing trails
from favorites list
264–265

defining additional state
store 261–263

displaying current number
of favorite trails
265–266

initializing AppState
270–271

reorganizing and
refactoring 266–268

showing favorited trails on
favorite trails page
268–270

improving AppState
design 258–260

using in-memory store
254–258
creating and registering

state store 254–255
saving data entered on form

to AppState 255–258
StateHasChanged method 266,

269
strict mode 285
structuring components 51–54

partial class 52–54
single file 51–52

styling components 71–82
global styling 72–73
InputBase component

148–149
scoped styling 73–76
using CSS preprocessors

76–82
writing components for

34–36
submit events 113, 135
submit handler 113
SubmitEditTrail method 170
SubmitForm method 135, 153,

161
SuccessAlert component 163,

180
SupplyParameterFromQuery

attribute 101, 103–107
svg class 312
syntactically awesome style

sheets (Sass) 73
System.Text.Json library 42

T

Target element 81
template parameters 92

templated Razor delegates 277
templates

Blazor WebAssembly
configurations 20–21

defined 181–185
enhancing with generics

185–189
test doubles 274
TestContext class 279–280
testing with bUnit 272–290

adding bUnit test
project 274–277

components 277–289
emulating JavaScript

interactions 285–287
faking authentication and

authorization 283–285
testing multiple

components 287–289
testing rendered

markup 278–281
triggering event

handlers 281–283
overview 273–274

TimeInMinutes property 146,
150

TItem type 186
Title parameter 115
tokens, customizing 224–225
Trail class 39, 212, 218, 235, 267,

280, 300
Trail entity 233, 299–300
Trail parameter 46, 171, 187,

258
Trail record 211, 217, 234
Trail type 262
trail-data.json JSON file 40, 305
Trail.cs class 214, 299
_trail.Image property 170
TrailCard component 39, 46–47,

51, 63, 68, 180, 187, 236,
250, 264–265, 267, 283, 289,
305, 313–314

TrailConfig class 233
TrailDetails component 63–68,

71, 73–76, 95, 214, 216, 267,
287, 289, 305, 313–314

TrailDetails drawer 214–219
TrailDetails.razor 313–314
TrailDetails.razor.css

stylesheet 73
TrailDto class 111, 124, 150,

165–166, 210
TrailDto instance 135
TrailDto model 123

INDEX324
TrailDto type 134
TrailForm

integrating RouteMap compo-
nent with 206–214

updating to handle
editing 171–173

TrailForm component 160, 162,
168–169, 171–172, 199, 211,
257, 259

TrailForm’s OnSubmit
event 162

{trailId} placeholder 156, 174
TrailId property 154, 212
TrailSearch component 89–91
TrailValidator class 125, 127,

150
TrailValidator constructor 125
transform: translateX

properties 66
Transient lifetime 28
translateX CSS function 67
TResponse type 135
triggering event handlers

281–283
TryGetValue method 249
TryParseValueFromString

method 145–147

U

UI updates
Blazor Server 13–14
Blazor WebAssembly 9–10

Unauthorized response 240
unit testing 272
Up method 303
Update-Database command 304
UpdateFilters method 103–104
uploading files 153–158

adding API endpoint 156–158

building request and
handler 154–156

testing everything out 158
UploadTrailImageEndpoint

endpoint 239–240, 249
UploadTrailImageRequest

class 154
UseBlazorFrameworkFiles()

middleware 294
User.Identity object 231
User.Identity.Name

property 224–225
Users table 223
using statement 30, 33, 126,

132, 199, 227, 232

V

valid class 128–129
Validate method 143
validation 123–130

configuring Blazor to use Flu-
ent Validation 125–130

configuring validation rules
with Fluent Validation
123–125

customizing CSS classes
141–144
creating FieldCssClass-

Provider 141–143
using custom FieldCssClass-

Providers with
EditForm 143–144

.validation-message class 144
validation-message class 128,

144
ValidationMessage

component 123, 126–127,
129–130, 144

ValidationSummary
component 123

validator class 128
Value parameter 117
Value property 118
value-based equality 133
variables 76
ViewSwitcher component

181–182, 185, 192
VS Code (Visual Studio Code) 2

W

watch command 81
Waypoint class 211–212
Waypoint record 211
WaypointAdded function 205
WaypointAdded method 205,

207
WaypointConfig class 212
Waypoints parameter 207
Waypoints property 211, 214,

218
WeatherForecast class 293
WeatherForecastController

example controller 293
WithMessage() method 125
writing components 30–48

Blazing Trails home page
38–48

defining layout 36–38
organizing files using feature

folders 31–34
setting up styling 34–36

wwwroot folder 30

Z

z-index property 202

Chris Sainty

ISBN-13: 978-1-61729-864-6

C
reate rich web frontends without relying on JavaScript.
Microsoft’s Blazor framework uses WebAssembly to
extend the ultra-popular ASP.NET platform. In Blazor,

you can build interactive web components that run natively
in the browser without plug-ins or transpilers. And because
it’s C# end-to-end, it’s easy to share code between the server
and your web UI.

Blazor in Action teaches you to create full-stack ASP.NET
applications end-to-end in C#. You’ll start by learning to build
Blazor web components, working through core topics like
routing and forms. As you go, you’ll implement a hiking route
web application that includes reusable code, integration with
JavaScript libraries, and role-based security. To make sure your
app is production ready, this practical book also covers state
management, data persistence, and testing.

What’s Inside
● Dynamic and reusable UI components
● Sharing client and server code
● Role-based security using Auth0
● Persisting state using local browser storage

For web developers with C# and .NET experience.

Chris Sainty has been a part of the Blazor community from
the beginning. He’s an active blogger, open source developer,
international speaker, and a Microsoft MVP.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

Blazor IN ACTION

ASP.NET / C#

M A N N I N G

“Th e right place to start your
journey with Blazor.”—Kalyan Chanumolu, Microsoft

“An excellent introduction
and reference for Blazor

development.”—Jeff Smith, TJX

“Guides the user through
the practical use of Blazor

components and the
concepts behind them.

 Fantastic book!”—Jim Wilson
Open Applications Group

“A very well-conceived and
well-executed introduction
to Blazor and its use in full-

 stack development.”
—Mark Chalkley
MainStreetCities

See first page

	Blazor in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Starting your Blazor journey
	1.1 Why choose Blazor for new applications?
	1.2 Components, a better way to build UI
	1.2.1 What is a component?
	1.2.2 The benefits of a component-based UI
	1.2.3 Anatomy of a Blazor component

	1.3 Blazor, a platform for building modern UIs with C#
	1.3.1 Understanding hosting models
	1.3.2 Blazor WebAssembly
	1.3.3 Blazor Server
	1.3.4 Other hosting models

	Summary

	2 Your first Blazor app
	2.1 Setting up the application
	2.1.1 Blazor WebAssembly template configurations
	2.1.2 Creating the application

	2.2 Building and running the application
	2.3 Key components of a Blazor application
	2.3.1 Index.html
	2.3.2 Program.cs
	2.3.3 App.razor
	2.3.4 wwwroot folder and _Imports.razor

	2.4 Writing your first components
	2.4.1 Organizing files using feature folders
	2.4.2 Setting up styling
	2.4.3 Defining the layout
	2.4.4 The Blazing Trails home page

	Summary

	3 Working with Blazor’s component model
	3.1 Structuring components
	3.1.1 Single file
	3.1.2 Partial class

	3.2 Component life cycle methods
	3.2.1 The first render
	3.2.2 The life cycle with async
	3.2.3 Dispose: The extra life cycle method

	3.3 Working with parent and child components
	3.3.1 Passing values from a parent to a child
	3.3.2 Passing data from a child to a parent

	3.4 Styling components
	3.4.1 Global styling
	3.4.2 Scoped styling
	3.4.3 Using CSS preprocessors

	Summary

	4 Routing
	4.1 Introducing client-side routing
	4.1.1 Blazor’s router
	4.1.2 Defining page components

	4.2 Navigating between pages programmatically
	4.3 Passing data between pages using route parameters
	4.4 Handling multiple routes with a single component
	4.5 Working with query strings
	4.5.1 Setting query-string values
	4.5.2 Retrieving query-string values using SupplyParameterFromQuery

	Summary

	5 Forms and validation— Part 1: Fundamentals
	5.1 Super-charging forms with components
	5.1.1 Creating the model
	5.1.2 Basic EditForm configuration
	5.1.3 Collecting data with input components
	5.1.4 Creating inputs on demand

	5.2 Validating the model
	5.2.1 Configuring validation rules with Fluent Validation
	5.2.2 Configuring Blazor to use Fluent Validation

	5.3 Submitting data to the server
	5.3.1 Adding MediatR to the Blazor project
	5.3.2 Creating a request and handler to post the form data to the API
	5.3.3 Setting up the endpoint

	Summary

	6 Forms and validation— Part 2: Beyond the basics
	6.1 Customizing validation CSS classes
	6.1.1 Creating a FieldCssClassProvider
	6.1.2 Using custom FieldCssClassProviders with EditForm

	6.2 Building custom input components with InputBase
	6.2.1 Inheriting from InputBase<T>
	6.2.2 Styling the custom component
	6.2.3 Using the custom input component

	6.3 Working with files
	6.3.1 Configuring the InputFile component
	6.3.2 Uploading files when the form is submitted

	6.4 Updating the form to allow editing
	6.4.1 Separating the trail form into a standalone component
	6.4.2 Refactoring AddTrailPage.razor
	6.4.3 Adding the edit trail feature
	6.4.4 Testing the edit functionality

	Summary

	7 Creating more reusable components
	7.1 Defining templates
	7.2 Enhancing templates with generics
	7.3 Sharing components with Razor class libraries
	Summary

	8 Integrating with JavaScript libraries
	8.1 Creating a JavaScript module and accessing it via a component
	8.1.1 Testing out the RouteMap component
	8.1.2 Calling JavaScript functions from C# and returning a response

	8.2 Calling C# methods from JavaScript
	8.3 Integrating the RouteMap component with the TrailForm
	8.4 Displaying the RouteMap on the TrailDetails drawer
	Summary

	9 Securing Blazor applications
	9.1 Integrating with an identity provider: Auth0
	9.1.1 Registering applications with Auth0
	9.1.2 Customizing tokens from Auth0
	9.1.3 Configuring Blazor WebAssembly to use Auth0
	9.1.4 Configuring ASP.NET Core WebAPI to use Auth0

	9.2 Displaying different UI fragments based on authentication status
	9.2.1 Updating the Home feature

	9.3 Prevent unauthorized users accessing a page
	9.3.1 Securing API endpoints
	9.3.2 Calling secure API endpoints from Blazor

	9.4 Authorizing users by role
	9.4.1 Adding roles in Auth0
	9.4.2 Consuming Auth0 roles in Blazor WebAssembly
	9.4.3 Implementing role-based logic

	Summary

	10 Managing state
	10.1 Simple state management using an in-memory store
	10.1.1 Creating and registering a state store
	10.1.2 Saving data entered on the form to AppState

	10.2 Improving the AppState design to handle more state
	10.3 Creating persistent state with browser local storage
	10.3.1 Defining an additional state store
	10.3.2 Adding and removing trails from the favorites list
	10.3.3 Displaying the current number of favorite trails
	10.3.4 Reorganizing and refactoring
	10.3.5 Showing favorited trails on the favorite trails page
	10.3.6 Initializing AppState

	Summary

	11 Testing your Blazor application
	11.1 Introducing bUnit
	11.2 Adding a bUnit test project
	11.3 Testing components with bUnit
	11.3.1 Testing rendered markup
	11.3.2 Triggering event handlers
	11.3.3 Faking authentication and authorization
	11.3.4 Emulating JavaScript interactions
	11.3.5 Testing multiple components

	Summary

	appendix A Adding an ASP.NET Core backend to a Blazor WebAssembly app
	A.1 Adding an ASP.NET Core Web API
	A.1.1 Removing boilerplate from the new API project
	A.1.2 Configuring the API

	A.2 Adding a .NET class library to share code between client and API
	A.3 Setting up an SQLite database in the API
	A.3.1 Configuring the initial entities for the system
	A.3.2 Setting up the database context
	A.3.3 Connection strings and service configuration
	A.3.4 Creating the first migration and creating the database

	appendix B Updating existing areas to use the API
	B.1 Creating a new API endpoint that returns all trails
	B.2 Updating the Home feature to load trail data from the API
	B.2.1 Adding the GetTrailsHandler class
	B.2.2 Updating HomePage.razor and SearchPage.razor to use GetTrailRequest via MediatR
	B.2.3 Updating TrailCard.razor and TrailDetails.razor

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Blazor in Action - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

